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Chapter 8

CONCEPTUALIZING AN AVERAGE
AS A STABLE FEATURE OF A NOISY PROCESS1

Clifford Konold and Alexander Pollatsek
University of Massachusetts, Amherst, USA

INTRODUCTION

Until recently, the study of statistics in the United States was confined to the
university years. Following recommendations made by the National Council of
Teachers of Mathematics (NCTM, 1989; 2000), and building on the ground-
breaking Quantitative Literacy series (see Scheaffer, 1991), statistics and data
analysis are now featured prominently in most mathematics curricula and are also
appearing in the K–12 science standards and curricula (Feldman, Konold, &
Coulter, 2000; National Research Council, 1996). Concurrently, university-level
introductory statistics courses are changing (e.g., Cobb, 1993; Gordon & Gordon,
1992; Smith, 1998) in ways that pry them loose from the formulaic approach copied
with little variation in most statistics textbooks published since the 1950s.1 At all
levels, there is a new commitment to involve students in the analysis of real data to
answer practical questions. Formal inference, at the introductory levels, is taking a
less prominent place as greater emphasis is given to exploratory approaches (à la
Tukey, 1977) to reveal structure in data. This approach often capitalizes on the
power of visual displays and new graphic-intensive computer software (Biehler,
1989; Cleveland, 1993; Konold, 2002).

Despite all the criticisms that we could offer of the traditional introductory
statistics course, it at least has a clear objective: to teach ideas central to statistical
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inference, including the Law of Large Numbers and the Central Limit Theorem. For
the students now learning more exploratory forms of data analysis, the objective is
less clear. There are various proposals about which core ideas we should target in
early instruction in data analysis. Wild and Pfannkuch (1999), for example, view
variation as the core idea of statistical reasoning and propose various subconstructs
that are critical to learning to reason about data. Recently designed and tested
materials for 12- to 14-year-olds aim at developing the idea of a distribution (Cobb,
1999; Cobb, McClain, & Gravemeijer, 2003). According to the supporting research,
this idea entails viewing data as “entities that are distributed within a space of
possible values,” in which various statistical representations—be they types of
graphical displays or numerical summaries—are viewed as different ways of
structuring or describing distributions (see Cobb, 1999, pp. 10–11). Others have
argued the centrality of the idea of data as an aggregate—an emergent entity (i.e.,
distribution) that has characteristics not visible in any of the individual elements in
the aggregate (Konold & Higgins, 2003; Mokros & Russell, 1995).

In this article, we build on these ideas of variation, distribution, and aggregate to
offer our own proposal for the core idea that we believe should guide statistics and
data analysis instruction, beginning perhaps as early as age 8. In short, that idea
involves coming to see statistics as the study of noisy processes—processes that
have a signature, or signal, which we can detect if we look at sufficient output.

It might seem obvious that a major purpose of computing statistics such as the
mean or median is to represent such a “signal” in the “noise” of individual data
points. However, this idea is virtually absent from our curricula and standards
documents. Neither NCTM’s Principles and Standards for School Mathematics
(2000) nor the American Association for the Advancement of Science (AAAS),
Science for All Americans (1989), explicitly describes an average as anything like a
signal. Our search through several middle school and high school mathematics
curricula has not uncovered a single reference to this idea. Nor does it appear in
earlier research investigating students’ ideas about averages and their properties
(Mokros & Russell, 1995; Pollatsek, Lima, & Well, 1981; Strauss & Bichler, 1988).
The idea is evident, however, in a few recent studies. In their investigation of
statistical reasoning among practicing nurses, Noss, Pozzi, and Hoyles (1999) refer
briefly to this interpretation; one nurse the authors interviewed characterized a
person’s average blood pressure as “what the normal range was sort of settling down
to be.” The idea of signal and noise is also evident in the work of Biehler (1994),
Wild and Pfannkuch (1999), and Wilensky (1997).

OVERVIEW

We begin by describing how statisticians tend to use and think about averages as
central tendencies. We then contrast this interpretation with various other
interpretations of averages that we frequently encounter in curriculum materials.
Too frequently, curricula portray averages as little more than summaries of groups
of values.2 Although this approach offers students some rationale for summarizing
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group data (for example, to see what is “typical”), we will argue that it provides
little conceptual basis for using such statistical indices to characterize a set of data,
that is, to represent the whole set. To support this claim, we review research that has
demonstrated that although most students know how to compute various averages
such as medians and means, few use averages to represent groups when those
averages would be particularly helpful—to make a comparison between two groups.
We recommend beginning early in instruction to help students develop the idea of
central tendency (or data as a combination of signal and noise). To explore the
conceptual underpinnings of the notion of central tendency, we briefly review its
historical development and then examine three types of statistical processes. For
each process, we evaluate the conceptual difficulty of regarding data from that
process as a combination of signal and noise. Finally, we outline some possible
directions for research on student thinking and learning.

In this article, we focus our discussion on averages, with an emphasis on means
(using the term average to refer to measures of center collectively, including the
mean, median, and mode). By focusing on averages, we risk being misunderstood
by those who have recently argued that instruction and public discourse have been
overemphasizing measures of center at the expense of variability (e.g., Shaughnessy,
Watson, Moritz, & Reading, 1999; also see Gould, 1996). A somewhat related but
more general critique comes from proponents of Tukey’s (1977) exploratory data
analysis (EDA) who advocate that, rather than structure our curricula around a
traditional view of inferential statistics, we should instruct young students in more
fluid and less theory-laden views of analysis (e.g., Biehler, 1989; 1994).

Those concerned that measures of center have been overemphasized as well as
proponents of EDA may misread us as suggesting that instruction should aim at
teaching students to draw conclusions by inspecting a limited number of simple
summaries such as means. In fact, we agree wholeheartedly with Shaughnessy et al.
(1999) and with EDA proponents that we should be teaching students to attend to
general distributional features such as shape and spread, and to look at distributions
in numerous ways for insights about the data. We do not view the decision to focus
our analysis here on measures of center as being at odds with their concerns. Our
decision is partly pragmatism and partly principle.

On the pragmatic side, we wanted to simplify our exposition. Almost all
statistical measures capture group properties, and they share an important property
with good measures of centers: They stabilize as we collect more data. These
measures include those of spread, such as the standard deviation, interquartile range,
percentiles, and measures of skewness. But switching among these different
measures would needlessly complicate our exposition.

The deeper reason for focusing our discussion on measures of center is that we
believe such measures do have a special status, particularly for comparing two sets
of data. Here, some proponents of teaching EDA may well disagree with us. Biehler
(1994), for example, maintained that the distribution should remain the primary
focus of analysis and that we should regard an average, such as the mean, as just one
of many of its properties. We will argue that the central idea should be that of
searching for a signal and that the idea of distribution comes into better focus when
it is viewed as the “distribution around” a signal. Furthermore, we claim that the
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most basic questions in analyzing data involve looking at group differences to
determine whether some factor has produced a difference in the two groups.
Typically, the most straightforward and compelling way to answer these questions is
to compare averages. We believe that much of statistical reasoning will elude
students until they understand when a comparison of two averages makes sense and,
as a corollary, when such a comparison is misleading. If they do not understand this,
students’ explorations of data (i.e., “data snooping”) will almost certainly lack
direction and meaning.

SIGNALS IN NOISY PROCESSES

A statistician sees group features such as the mean and median as indicators of
stable properties of a variable system—properties that become evident only in the
aggregate. This stability can be thought of as the certainty in situations involving
uncertainty, the signal in noisy processes, or, the descriptor we prefer, central
tendency. Claiming that modern-day statisticians seldom use the term central
tendency, Moore (1990, p. 107) suggests that we abandon the phrase and speak
instead of measures of “center” or “location.” But we use the phrase here to
emphasize conceptual aspects of averages that we fear are often lost, especially to
students, when we talk about averages as if they were simply locations in
distributions.

By central tendency we refer to a stable value that (a) represents the signal in a
variable process and (b) is better approximated as the number of observations
grows.3 The obvious examples of statistics used as indicators of central tendency are
averages such as the mean and median. Processes with central tendencies have two
components: (a) a stable component, which is summarized by the mean, for
example; and (b) a variable component, such as the deviations of individual scores
around an average, which is often summarized by the standard deviation.

It is important to emphasize that measures of center are not the only way to
characterize stable components of noisy processes. Both the shape of a frequency
distribution and global measures of variability, for example, also stabilize as we
collect more data; they, too, give us information about the process. We might refer
to this more general class of characteristics as signatures of a process. We should
point out, however, that all the characteristics that we might look at, including the
shape and variability of a distribution, are close kin to averages. That is, when we
look at the shape of a particular distribution, we do not ordinarily want to know
precisely how the frequency of values changes over the range of the variable.
Rather, we tame the distribution’s “bumpiness.” We might do this informally by
visualizing a smoother underlying curve or formally by computing a best-fit curve.
In either case, we attempt to see what remains when we smooth out the variability.
In a similar manner, when we employ measures such as the standard deviation or
interquartile range, we strive to characterize the average spread of the data in the
sample.
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Implicit in our description of central tendency is the idea that even as one speaks
of some stable component, one acknowledges the fundamental variability inherent in
that process and thus its probabilistic nature. Because of this, we claim that the
notion of an average understood as a central tendency is inseparable from the notion
of spread. That average and variability are inseparable concepts is clear from the
fact that most people would consider talking about the average of a set of identical
values to be odd. In addition, it is hard to think about why a particular measure of
center makes sense without thinking about its relation to the values in the
distribution (e.g., the mean as the balance point around which the sum of the
deviation scores is zero, or the median as the point where the number of values
above equals the number of values below).

Not all averages are central tendencies as we have defined them above. We
could compute the mean weight of an adult lion, a Mazda car, and a peanut, but no
clear process would be measured here that we could regard as having a central
tendency. One might think that the mean weight of all the lions in a particular zoo
would be a central tendency. But without knowing more about how the lions got
there or their ages, it is questionable whether this mean would necessarily tell us
anything about a process with a central tendency. Quetelet described this distinction
in terms of true means of distributions that follow the law of errors versus arithmetic
means that can be calculated for any assortment of values, such as our hodgepodge
above (see Porter, 1986, p. 107).

Populations versus Processes

In the preceding description, we spoke of processes rather than populations. We
contrast these two ways of thinking about samples or batches of data, as shown in
Figure 1. When we think of a sample as a subset of a population (see the left
graphic), we see the sample as a piece allowing us to guess at the whole: The
average and shape of the sample allow us perhaps to estimate the average and shape
of the population. If we wanted to estimate the percentage of the U.S. population
favoring gun control, we would imagine there being a population percentage of
some unknown value, and our goal would be to estimate that percentage from a
well-chosen sample. Thinking in these terms, we tend to view the population as
static and to push to the background questions about why the population might be
the way it is or how it might be changing.

From the process perspective (as depicted in the right graphic of Figure 1), we
think of a population or a sample as resulting from an ongoing, dynamic process, a
process in which the value of each observation is determined by a large number of
causes, some of which we may know and others of which we may not. This view
moves to the foreground questions about why a process operates as it does and what
factors may affect it. In our gun control example, we might imagine people’s
opinions on the issue as being in a state of flux, subject to numerous and complex
influences. We sample from that process to gauge the net effect of those influences
at a point in time, or perhaps to determine whether that process may have changed
over some time period.
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For many of the reasons discussed by Frick (1998), we have come to prefer
thinking of samples (and populations, when they exist) as outputs of processes.4 One
reason for this preference is that a process view better covers the range of statistical
situations in which we are interested, many of which have no real population (e.g.,
weighing an object repeatedly). Another reason for preferring the process view is
that when we begin thinking, for example, about how to draw samples, or why two
samples might differ, we typically focus on factors that play a role in producing the
data. That is, we think about the causal processes underlying the phenomena we are
studying. Biehler (1994) offered a similar analysis of the advantages of viewing data
as being produced by a probabilistic mechanism—a mechanism that could be altered
to produce predictable changes in the resultant distribution. Finally, viewing data as
output from a process highlights the reason that we are willing to view a collection
of individual values as in some sense “the same” and thus to reason about them as a
unity: We consider them as having been generated by the same process.

Figure 1. Data viewed as a sample of a population (left) versus data viewed as output of a
noisy process (right).

This notion of process is, of course, inherent in the statistician’s conception of a
population, and we expect that most experts move between the process and
population perspectives with little difficulty or awareness.5 However, for students
new to the study of statistics, the choice of perspective could be critical. To illustrate
more fully what we mean by reasoning about processes and their central tendencies,
we discuss recent results of the National Assessment of Educational Progress
(NAEP).
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NAEP Results as Signals of Noisy Processes

NAEP is an assessment of student capabilities in Grades 4, 8, and 12, conducted
every 4 years in the United States. On the 1998 assessment, eighth graders averaged
264 on the reading component.6 What most people want to know, of course, is how
this compares to the results from previous assessments. In this case, the mean had
increased 4 points since the 1994 assessment. The 12th graders had also gained 4
points on average since 1994, and the fourth graders, 3 points. Donahue, Voelkl,
Campbell, and Mazzeo (1999) interpreted these differences as evidence that
children’s reading scores were improving.

Reports such as this are now so commonplace that we seldom question the logic
of this reasoning. But what is the rationale in this case for comparing group means
and for taking the apparently small difference between those means seriously? We
will argue that to answer these questions from a statistical perspective requires a
well-formed idea of a central tendency.

Interpreted as a central tendency, the mean of 264 is a measure of a complex
process that determines how well U.S. children read at a given point in time. An
obvious component of this process is the reading instruction that children receive in
school. Another component of the process is the behavior of adults in the home:
their personal reading habits, the time they spend reading to their children, and the
kind and quantity of reading material they have in the home. A third component
consists of factors operating outside the home and school, including determinants of
public health and development, such as nutrition levels and the availability and use
of prenatal care; genetic factors; and the value placed on literacy and education by
local communities and the society at large.

Using a statistical perspective, we often find it useful to regard all these
influences together (along with many others that we may be unaware of) as a global
process that turns out readers of different capabilities. In the sense that we cannot
know how these various factors work together in practice to produce results, the
global process is a probabilistic one, unpredictable at the micro level. However,
even though readers produced by this process vary unpredictably in their
performance, we can regard the entire process at any given time as having a certain
stable capability to produce competent readers. The average performance of a large
sample of readers produced by this process is one way to gauge the power of that
process (or its propensity) to produce a literate citizenry. As Mme. de Staël
explained in 1820, “events which depend on a multitude of diverse combinations
have a periodic recurrence, a fixed proportion, when the observations result from a
large number of chances” (as quoted in Hacking, 1990, p. 41). And because of the
convergence property of central tendencies, the larger the data set, the better the
estimate we expect our sample average to be of the stable component of the process.

Given the huge sample size in the reading example (about 11,000 eighth graders)
and assuming proper care in composing the sample, we expect that the sample mean
of 264 is very close to this propensity. Assuming that the 1994 mean is of equal
quality, we can be fairly certain that the difference between these two means reflects
a real change in the underlying process that affects reading scores. Note that the
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important inference here does not concern a sampling issue in the narrow sense of
randomly sampling from a fixed known population. That is, assuming no changes in
the system, we would expect next year’s mean to come out virtually the same even
though the population of eighth graders would consist of different individuals.
Focusing on the process rather than the population helps make the real intent of our
question clear.

The mean is not necessarily the best single number to serve as an index of such a
change. The median is also a good index, and changes in the 25th percentile, the
percent above some minimal value, the standard deviation, or the interquartile range
could also be valid indicators of changes in the underlying educational process. As
long as a process remains stable, we expect the mean, or any of these other statistical
indices obtained from that process, to remain relatively unchanged from sample to
sample. Conversely, when a statistic from a large sample changes appreciably, we
assume that the process has changed in some way. Furthermore, these expectations
are crucial in our attempts to evaluate efforts to alter processes. In the case of
reading, we might introduce new curricula, run an advertising campaign
encouraging parents to read to their children, expand the school free lunch program
in disadvantaged areas, and upgrade local libraries. If we do one or more of these
things and the mean reading scores of an appropriate sample of children increases,
we have grounds for concluding that we have improved the process for producing
readers. Again, we emphasize that though we have specified the mean in this
example, we might be as happy using the median or some other measure of center.

The above example, however, indicates a way in which a measure of center is
often special. That is, the practical issue in which we are usually interested is
whether, overall, things are getting better or worse, a question most naturally
phrased in terms of a change of center. It is much harder to think of examples where
we merely want to increase or decrease the variability or change the shape of the
distribution. We could imagine an intervention that tried only to narrow the gap
between good and poor readers, in which case we would compare measures of
spread, such as the standard deviation. Although there are questions that are
naturally phrased in terms of changes in variability or distribution shape, such
questions are typically second-order concerns. That is, we usually look at whether
variability or shape have changed to determine whether we need to qualify our
conclusion about comparing measures of center. Even in situations where we might
be interested in reducing variability, such as in income, we are certainly also
interested in whether this comes at the expense of lowering the average.

DIFFERENT INTERPRETATIONS OF AVERAGES

We have argued that statisticians view averages as central tendencies, or signals
in variable data. But this is not the only way to think about them. In Table 1, we list
this interpretation along with several others, including viewing averages as data
reducers, fair shares, and typical values. We consider an interpretation to be the goal
that a person has in mind when he or she computes or uses an average. It is the
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answer that a person might give to the question, “Why did you compute the average
of those values?” Some of these interpretations are described in Strauss and Bichler
(1988) as “properties” of the mean. Mokros and Russell (1995) described other
interpretations as “approaches” that they observed elementary and middle school
students using.7 In Table 1, we also provide an illustrative problem context for each
interpretation. Of course, any problem could be interpreted from a variety of
perspectives. But we chose these particular examples because their wording seemed
to suggest a particular interpretation.

Table 1. Examples of contexts for various interpretations of average

Interpretation/
meaning

Example context

Data reduction Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav brought
20, and Ami brought 25. Can you tell me in one number how many
pieces of candy each child brought? (From Strauss & Bichler, 1988)

Fair share Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav brought
20, and Ami brought 25. The children who brought many gave some to
those who brought few until everyone had the same number of candies.
How many candies did each girl end up with? (Adapted from Strauss &
Bichler, 1988)

Typical value The numbers of comments made by eight students during a class period
were 0, 5, 2, 22, 3, 2, 1, and 2. What was the typical number of
comments made that day? (Adapted from Konold & Garfield, 1992)

Signal in noise A small object was weighed on the same scale separately by nine
students in a science class. The weights (in grams) recorded by each
student were 6.2, 6.0, 6.0, 15.3, 6.1, 6.3, 6.2, 6.15, 6.2. What would you
give as the best estimate of the actual weight of this object? (Adapted
from Konold & Garfield, 1992)

Data Reduction

According to this view, averaging is a way to boil down a set of numbers into
one value. The data need to be reduced because of their complexity—in particular,
due to the difficulty of holding the individual values in memory. Freund and Wilson
(1997) draw on this interpretation to introduce averages in their text: “Although
distributions provide useful descriptions of data, they still contain too much detail
for some purposes” (p. 15). They characterize numerical summaries as ways to
further simplify data, warning that “this condensation or data reduction may be
accompanied by a loss of information, such as information on the shape of the
distribution” (p. 16). One of the high school students interviewed by Konold,
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Pollatsek, Well, and Gagnon (1997) used this as a rationale for why she would look
at a mean or median to describe the number of hours worked by students at her
school:

We could look at the mean of the hours they worked, or the median. … It would go
through a lot to see what every, each person works. I mean, that’s kind of a lot, but
you could look at the mean. … You could just go through every one … [but] you’re
not going to remember all that.

Fair Share

The computation for the mean is often first encountered in elementary school in
the context of fair-share problems, with no reference to the result being a mean or
average. Quantities distributed unevenly among several individuals are collected and
then redistributed evenly among the individuals. The word average, in fact, derives
from the Arabic awariyah, which translates as “goods damaged in shipping.”
According to Schwartzman (1994), the Italians and French appropriated this term to
refer to the financial loss resulting from damaged goods. Later, it came to specify
the portion of the loss borne by each of the many people who invested in the ship.
Strauss and Bichler (1988) provided 11 problems as examples of tasks that they used
in their research, and we would regard all but three of them as involving the idea of
fair share. We can view many commonly encountered rates, such as yearly
educational expenditure per student, as based on the fair-share idea, since we tend to
think most naturally about these rates as distributing some total quantity equally
over some number of units. In such cases, we do not ordinarily think of the
computed value in relation to each individual value; nor do we worry, when
computing or interpreting this fair share, about how the component values are
distributed or whether there are outliers.

Typical Value

Average as a typical score is one of the more frequently encountered
interpretations in current precollege curricula. What appears to make values typical
for students are their position (located centrally in a distribution of values) and/or
their frequency (being the most frequent or even the majority value). Younger
students favor the mode for summarizing a distribution, presumably because it can
often satisfy both of these criteria (Konold & Higgins, 2003). Mokros and Russell
(1995) speculated that those students they interviewed who used only modes to
summarize data may have interpreted typical as literally meaning the most
frequently occurring value. Researchers have also observed students using as an
average a range of values in the center of a distribution (Cobb, 1999; Konold,
Robinson, Khalil, Pollatsek, Well, Wing, & Mayr, 2002; Mokros & Russell, 1995;
Noss, Pozzi, & Hoyles, 1999; Watson & Moritz, 1999). These “center clumps” are
located in the heart of the distribution and often include a majority of the
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observations. In this respect, these clumps may serve as something akin to a mode
for some students.

Signal in Noise

According to this perspective, each observation is an estimate of an unknown but
specific value. A prototypical example is repeatedly weighing an object to determine
its actual weight. Each observation is viewed as deviating from the actual weight by
a measurement error, which is viewed as “random.” The average of these scores is
interpreted as a close approximation to the actual weight.

Formal Properties of Averages

Many school tasks involving averages seem unrelated to any of the particular
interpretations we describe above. For example, finding the average of a set of
numbers out of context seems intended only to develop or test students’
computational abilities. Other school tasks explore formal properties of averages,
which we also would not view as directly related to particular interpretations. Such
tasks include those meant to demonstrate or assess the idea that (a) the mean of a set
of numbers is simply related to the sum of those numbers, (b) the mean is a balance
point and the median a partition that divides the cases into two equal-sized groups,8

(c) the mean and median lie somewhere within the range of the set of scores, and (d)
the mean or median need not correspond to the value of an actual observation. In
their longitudinal study of the development of young students’ understandings of
average, Watson and Moritz (2000) focused in particular on these relations, asking
students, for example, how the mean number of children per family could possibly
be 2.3 rather than a whole number. We consider most of the properties enumerated
by Strauss and Bichler (1988, p. 66) to be formal relations of this sort. We are not
arguing that these are unimportant or trivial ideas, but rather that they are usually not
tied to particular interpretations of averages.

Applying Interpretations to the Problem of Group Comparison

In the NAEP example, we explored the notion of central tendency and showed
how it provides a basis for using averages—means, in that case—to compare
groups. Because the mean is a very stable estimator in large samples, we can use it
to track changes in a process even though the output from that process is variable
and unpredictable in the short run.

What bases do the other interpretations of average provide for evaluating the two
NAEP results by comparing means? Consider the data reduction interpretation: Data
are distilled to a single value, presumably because of our inability to consider all the
values together. We argue that nothing in this interpretation suggests that any new
information emerges from this process; indeed, a considerable loss of information
seems to be the price paid for reducing complexity. By this logic, it would seem that
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as a data set grows larger, any single-value summary becomes less representative of
the group as increasingly more information is lost in the reduction process.

The typical-value interpretation is nearer to the central tendency interpretation
since it may involve the idea that the value, in some sense, represents much of the
data in the group. However, as with the data reduction interpretation, it is not clear
why one ideally would like to have typical values from large samples rather than
from small ones. Indeed, it would seem as reasonable to regard a typical score as
becoming less (rather than more) representative of a group as that group became
larger and acquired more deviant values.

The fair-share interpretation may provide some basis for using means to
compare groups. One could think of the mean in the 1998 NAEP data as the reading
score that all students sampled that year would have if reading ability were divided
evenly among all the students sampled. Based on this reasoning, one might
reasonably conclude that the 1998 group had a higher reading score than the 1994
group. Cortina, Saldanha, and Thompson (1999) explored the use of this notion by
seventh- and eighth-grade students and concluded that these students could use the
idea of fair share to derive and compare means of unequal groups. However, we
would guess that many students would regard such reasoning skeptically unless it
were physically possible to reallocate quantities in the real-world situation. If, for
example, we were thinking about the number of boxes of cookies sold by different
scout troops (as in the study by Cortina et al.), redistributing the cookie boxes
evenly makes some sense. In contrast, if we were reasoning about mean weight,
height, or IQ of a number of individuals, we would have to think of these pounds,
inches, or IQ points being shared metaphorically.9

Furthermore, we are skeptical about whether the fair-share interpretation is a
statistical notion at all. It seems to ignore, in a sense, the original distribution of
values and to attend only to the total accumulation of some amount in a group.
Consider, for example, the value we would compute to decide how the different
numbers of candies brought by various children to a party could be equally
redistributed among the children (see Table 1). In this context, the particulars about
how the candies were originally distributed seem irrelevant. That is, the number that
constitutes a fair share is not viewed as a representation or summary of the original
distribution but rather as the answer to the question of how to divide the candies
equitably.

In conclusion, whereas some of the interpretations may be useful to summarize a
group of data, it is quite another thing to take a statistic seriously enough as to use it
to represent the entire group, as one must do when using averages to compare
groups. We claim that viewing an average as a central tendency provides a strong
conceptual basis for, among other things, using averages to compare two groups,
whereas various other interpretations of average, such as data reducers and typical
values, do not.

We acknowledge that our analysis of these alternative interpretations has been
cursory and that it should thus be regarded skeptically. However, our primary
purpose is to highlight some of the questions that should be asked in exploring
different approaches to introducing students to averages. Furthermore, there is good
evidence that whatever interpretations students do have of averages, those
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interpretations usually do not support using averages to compare one group to
another. Many studies have demonstrated that even those who know how to
compute and use averages in some situations do not tend to use them to compare
groups.

Students’ Tendency Not to Use Averages to Compare Groups

Gal, Rothschild, and Wagner (1990) interviewed students of ages 8, 11, and 14
about their understanding of how means were computed and what they were useful
for. They also gave the students nine pairs of distributions in graphic form and asked
them to decide whether the groups were different or not. Only half of the 11- and
14-year-olds who knew how to compute the mean of a single group (and, also, to
some extent, how to interpret it) went on to use means to compare two groups.
Hancock, Kaput, and Goldsmith (1992) and, more recently, Watson and Moritz
(1999) have reported similar findings.

This difficulty is not limited to the use of means. Bright and Friel (1998)
questioned 13-year-old students about a stem-and-leaf plot that showed the heights
of 28 students who did not play basketball. They then showed them a stem-and-leaf
plot that included these data along with the heights of 23 basketball players. This
latter plot is shown in Figure 2. Heights of basketball players were indicated in bold
type, as they are here. Students had learned how to read this type of display and had
no difficulty reading values from it. Asked about the “typical height” in the single
distribution of the non–basketball players, the students responded by specifying
middle clumps (e.g., 150–160 cm), a reasonable group summary. Yet, shown the
plot with both distributions, they could not generalize this method or find another
way to determine “How much taller are the basketball players than the students who
did not play basketball?”

We found similar difficulties when we interviewed four high school seniors
(ages 17–18) who had just completed a yearlong course in probability and statistics
(Biehler, 1997; Konold et al., 1997). During the course, the students had frequently
used medians (primarily in the context of box plot displays) as well as means to
make group comparisons. However, during a postcourse interview in which they
were free to use whatever methods of comparison seemed appropriate, they seldom
used medians or means for this purpose. Instead, they tended to compare the number
of cases in each group that had the same value on the dependent variable. For
example, to decide if males were taller than females, they might inspect the sample
for all individuals who were 6 feet tall and argue that males were taller because there
were more males than females of that height. In making these comparisons, students
typically did not attend to the overall number of individuals in the two groups (in
this case, to the overall number of males vs. females). Other researchers, including
Cobb (1999) and Watson and Moritz (1999), have reported students using this same
“slicing” technique over a range of different problems to compare two groups.
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Note. The row headed by 13 (the stem) contains four cases (leaves)—three students of 138 centimeters
and a fourth student of 139 centimeters.

Figure 2. Stem-and-leaf plot of heights of students and basketball players (boldface) from
“Helping Students Interpret Data,” by G. Bright and S. N. Friel, in Reflections on Statistics:
Learning, Teaching, and Assessment in Grades K–12 (p. 81), edited by S. P. Lajoie, 1998,

Mahwah, NJ: Lawrence Erlbaum Associates. Copyright 1998 by Lawrence Erlbaum
Associates.

In short, even though instruction in statistics usually focuses on averages, many
students do not use those measures of central tendency when they would be
particularly helpful—to make comparisons between groups composed of variable
elements. We suggest that this pattern is symptomatic of students’ failure to interpret
an average of a data set as saying something about the entire distribution of values.
To address this problem instructionally, we believe that we should be encouraging
students early in statistics instruction to think of averages as central tendencies or
signals in noisy processes. We acknowledge that this is a complex idea and one that
is particularly difficult to apply to the type of processes that we often have students
investigating. We explore these conceptual difficulties below.

THREE TYPES OF PROCESSES AND THEIR CONCEPTUAL CHALLENGES

Hints about the cognitive complexity of central tendency are found in the
historical account of its development. It was Tycho Brache in the late 1500s who
introduced the use of means as central tendencies to astronomy (Plackett, 1970). He
used them to address a problem that had long troubled astronomers: What to take as
the position of a star, given that the observed coordinates at a particular time tended
to vary from observation to observation. When early astronomers began computing
means of observations, they were very cautious, if not suspicious, about whether and
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when it made sense to average observations. In fact, before the mid-eighteenth
century, they would never combine their own observations with those obtained from
another astronomer. They were fearful that if they combined data that had anything
but very small errors, the process of averaging would multiply rather than reduce the
effect of those errors (Stigler, 1986, p. 4). Taking the mean of multiple observations
became the standard solution only after it had been determined that the mean tended
to stabilize on a particular value as the number of observations increased.

It was another hundred years before Quetelet began applying measures of central
tendency to social and human phenomena (Quetelet, 1842). The idea of applying
means to such situations was inspired partly by the surprising observation that
national rates of birth, marriage, and suicides—events that at one level were subject
to human choice—remained relatively stable from year to year. Some, including
Arbuthnot and De Moivre, had taken these stable rates as evidence of supernatural
design. Quetelet explained them by seeing collections of individual behaviors or
events as analogous to repeated observations. Thus, he regarded observing the
weights of 1,000 different men—weights that varied from man to man—as
analogous to weighing the same man 1,000 times, with the observed weight varying
from trial to trial. The legitimacy of such an analogy, of course, has been a heated
controversy in statistics. Even at the time, Quetelet’s ideas brought stiff rebukes
from thinkers such as Auguste Comte, who thought it ludicrous to believe that we
could rise above our ignorance of values of individual cases simply by averaging
many of them (Stigler, 1986, p. 194). To Comte, statistics applied to social
phenomena was computational mysticism.

We think that the way these early thinkers reacted to different applications of the
mean is not merely a historical accident but instead says something about the “deep
structure” of these different applications. To explore the challenges of learning to
think about data as signal and noise, we examine the metaphor in the context of
three types of statistical processes: repeated measures, measuring individuals, and
dichotomous events.

Repeated Measures

Consider weighing a gold nugget 100 times on a pan balance, a prototypical
example of repeated measurement. It almost goes without saying that the purpose of
weighing the nugget is to determine its weight. But how does one deal with the fact
that the observed weight varies from trial to trial? We assume that statisticians and
nonstatisticians alike would regard these fluctuations as resulting from errors in the
measurement process. But given this variation, how should we use the 100
measurements to arrive at the object’s weight? Should all the measurements be
used? Perhaps not, if they are all not equally accurate. A novice might attempt to
deal with this question by trying to separate the 100 measurements into two classes:
those that are truly accurate versus those that are not. The problem then becomes
how to tell which observations are truly accurate, because the actual weight is not
known.
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One aspect of this situation that makes using a mean of the observations
particularly compelling is that, conceptually, we can separate the signal from the
noise. Because we regard an object as having some unknown but precise weight, it
is not a conceptual leap to associate the mean of several weighings with this actual
weight, while attributing the trial-by-trial variations to a distinctly different thing:
chance error produced by inaccuracies of the measurement instrument and by the
process of reading values from it. Indeed, we can also regard each individual
weighing as having two components—a fixed component determined by the actual
weight of the nugget and a variable component attributable to the imperfect
measurement process.

The relative clarity of this example hinges on our perception that the weight of
the nugget is a real property of the nugget. A few philosophers might regard it
(possibly along with the nugget itself) as a convenient fiction. But to most of us, the
weight is something real that the mean weight is approximating closely and that
individual weighings are approximating somewhat less closely. Another reason that
the idea of central tendency is compelling in repeated measurement situations is that
we can easily relate the mean to the individual observations as well. To help clarify
why this is so, we will make some of our assumptions explicit.

We have been assuming that the person doing the weighing is careful and that
the scale is unbiased and reasonably accurate. Given these assumptions, we expect
that the variability of the weighings would be small and that the frequency
histogram of observations would be single-peaked and approximately symmetric. If
instead we knew that the person had placed the nugget on different parts of the
balance pan, read the dial from different angles, or made errors in transcribing the
observations, we would be reluctant to treat the mean of these numbers as a central
tendency of the process. We would also be hesitant to accept the mean as a central
tendency if the standard deviation was extremely large or if the histogram of weights
was bimodal. In the ideal case, most observations would be close to the mean or
median and the distribution would peak at the average, a fact that would be more
apparent with a larger data set because the histogram would be smoother. In this
case, we could easily interpret the sample average as a good approximation to a
signal or a central tendency and view the variability around it as the result of random
error.

These assumptions about the procedure and the resulting data may be critical to
accepting the mean of the weighings as a central tendency, but they are not the only
things making that interpretation compelling. As indicated earlier, we maintain that
the key reason the mean observation in this example is relatively easy to accept as a
central tendency is that we can view it as representing a property of the object while
viewing the variability as a property of a distinctly independent measurement
process. That interpretation is much harder to hold when—rather than repeatedly
measuring an attribute of a single object—we measure an attribute of many different
objects, taking one measurement for each object and averaging the measurements.
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Measuring Individuals

Consider taking the height of 100 randomly chosen adult men in the United
States. Is the mean or median of these observations a central tendency? If so, what
does it represent? Many statisticians view the mean in this case as something like
the actual or true height of males in the United States (or in some subgroup). But
what could a statement like that mean?

For several reasons, an average in this situation is harder to view as a central
tendency than the average in the repeated measurement example. First, the gold
nugget and its mass are both perceivable. We can see and heft the nugget. In
contrast, the population of men and their average height are not things we can
perceive as directly. Second, it is clear why we might want to know the weight of
the nugget. But why would we want to know the average height of a population of
men? Third, the average height may not remain fixed over time, because of factors
such as demographic changes or changes in diet. Finally, and perhaps most
important, we cannot easily compartmentalize the height measurements into signal
and noise. It seems like a conceptual leap to regard each individual height as partly
true height, somehow determined from the average of the population, and partly
random error determined from some independent source other than measurement
error.

For all of these reasons, it is hard to think about the average height of the group
of men as a central tendency. We speculate, however, that it is somewhat easier to
regard differences between the averages of two groups of individual measurements
as central tendencies. Suppose, for example, we wanted to compare the average
height of U.S. men to the average height of (a) U.S. women or (b) men from
Ecuador. We might interpret the difference between averages as saying something in
the first case about the influence of genetics on height and in the second, about the
effects of nutrition on height. When making these comparisons, we can regard the
difference in averages as an indicator of the “actual effect” of gender or of nutrition,
things that are easier to imagine wanting to know about even if they are difficult to
observe directly.10

Some support for this speculation comes from Stigler (1999), who claims that
Quetelet created his infamous notion of the “average man” not as a tool to describe
single distributions, but as a method for comparing them: “With Quetelet, the
essential idea was that of comparison—the entire point was that there were different
average men for different groups, whether categorized by age or nationality, and it
was for the study of the nature and magnitude of those differences that he had
introduced the idea” (p. 61). Although we concede that the notion of a “true” or
“actual” value is still a bit strained in these comparison cases, we believe that one
needs some approximation to the idea of true value to make meaningful
comparisons between two groups whose individual elements vary. To see why, let
us look more closely at the comparison of men versus women.

Suppose we compute a mean or median height for a group of U.S. men and
another for a group of U.S. women. Note that the act of constructing the hypothesis
that gender partly determines height requires us to conceive of height as a process
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influenced by various factors. Furthermore, we cannot see how comparing the two
groups is meaningful unless we have (a) an implicit model that gender may have a
real genetic effect on height that is represented by the difference between the
average for men and the average for women, and (b) a notion that other factors have
influences on height that we will regard as random error when focusing on the
influences of gender on height.11 Thus, we claim that the concept of an average as
approximating a signal, or true value, comes more clearly into focus when we are
considering the influence of a particular variable on something (in this case, gender
on height). Such a comparison scheme provides a conceptual lever for thinking
about signal (gender influences) and noise (other influences). We return to this point
later.

Discrete Events

Another measure that is often used as an index of central tendency is the rate of
occurrence of some event. As a prototypical example, consider the rate of
contracting polio for children inoculated with the Salk vaccine. Even though
individual children either get the disease or do not, the rate tells us something about
the ability of inoculated children, as a group, to fight the disease.

How can we view a rate (or probability) as a measure of central tendency? First,
a probability can be formally viewed as a mean through what some would regard as
a bit of trickery. If we code the event “polio” as a 1, and the event “no polio” as a 0,
then the probability of getting polio is merely the mean of these Boolean values.
Producing a formal average, however, does not automatically give us a measure of
central tendency. We need to be able to interpret this average as a signal related to
the causes of polio. Compare the distribution of values in the dichotomous case to
the ideal case of the weighing example. In the dichotomous case, the mean is not a
value that can actually occur in a single trial. Rather than being located at either of
the peaks in the distribution, the mean is located in the valley between, typically
quite far from the observed values. Thus, it is nearly impossible to think about the
rate or probability as the true-value component of any single observation and the
occurrence or nonoccurrence of an individual case of polio as the sum of a true
value and a random error component. We suspect this is largely why the idea of a
central tendency in dichotomous situations is the least tangible of all.

It might help in reasoning about this situation to conceive of some process about
which the rate or probability informs us. In the disease example, the conception is
fairly similar to the earlier height example: A multitude of factors influence the
propensity of individuals to get polio—level of public health, prior development of
antibodies, incident rate of polio, age—all leading to a rate of getting the disease in
some population. So even though individuals either get polio or do not, the
propensity of a certain group of people to get polio is a probability between 0 and 1.
That value is a general indicator of the confluence of polio-related factors present in
that group.

As with our height example, although an absolute rate may have some meaning,
we think it is much easier to conceptualize the meaning of a signal when we are
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comparing two rates. In the polio example, this might involve comparing the rate in
an inoculated group to the rate in a placebo control group. Here, as with the height
example, most people would consider the difference in rates (or the ratio of the
rates) to be a valid measure of the efficacy of the vaccine or as a reasonable way to
compare the efficacy of two different vaccines.

The Role of Noise in Perceiving a Collection as a Group

We have argued that the idea of central tendency, or data as signal and noise, is
more easily applied to some types of processes than to others. But other factors, to
which we have alluded, may affect the difficulty of applying this idea. Consider the
case of comparing the heights of men and women. We would expect that the shape
and the relative spread of the distributions would affect how easy it is to conceive of
each distribution as a coherent group and, consequently, to be able to interpret each
group’s average as an indicator of a relatively stable group characteristic.

Indeed, perhaps the most critical factor in perceiving a collection of individual
measurements as a group is the nature of the variability within a group and how it
relates to the differences between groups. In general, we expect that these individual
measurements are easier to view as belonging to a group (and thus as having a
central tendency) when the variability among them is relatively small. To explain
what we mean by relatively small, we find the idea of natural kinds helpful.
According to Rosch and Mervis (1975), people often mentally represent real-world
concepts as prototypes and judge particular instances as “good” or “bad” depending
on how closely those instances match the category prototype. For example, a
prototypical bird for most North Americans is a medium-sized songbird, something
like a robin. The closer an instance is to the category prototype, the less time it takes
to identify that instance as a member of the category. North Americans can
categorize a picture of a starling as a bird faster than they can a picture of an ostrich.

In this theory of natural kinds, prototypes function much as averages do:
Instances of the category are single observations that can be some distance from the
average (or prototype). In fact, some competing theories of natural kinds (e.g.,
Medin & Schaffer, 1978) claim there is no actual instance that functions as a
prototype, but that the effective prototype is simply a mean (in some
multidimensional feature space) of all the instances in memory. What makes some
categories, such as birds, natural kinds is that there is little variability across features
within the category relative to the variability of those features between various
animal categories. So, even though there are some non-prototypical instances of
birds, such as penguins and ostriches, the distributions of features of birds overlap
little with those of other natural kinds such as mammals, so that the groups cohere.
This research suggests that it might be easier to accept, for example, the mean
heights of the men and women as representing group properties if there were no
overlap in heights of the men and women, or if at least the overlap were small
relative to the spread of the distributions.12
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Applying Central Tendency to Nonstandard Cases

In the foregoing examples, we focused on relatively ideal cases. We tacitly
assumed that our histograms of people’s heights, for example, were single-peaked,
approximately symmetric, and, configured as two histograms, had approximately
equal spread. In such cases, most experts would accept some average as a
meaningful measure of central tendency. Is the idea of central tendency applicable
only to these ideal cases, or is it more generalizable than that? In this section, we
consider several nonstandard examples to make the case that we can and do apply
the idea of central tendency to less ideal situations, in which there is some doubt
about whether a single measure of center is adequate to describe the data. We argue
that statistical reasoning in these situations still rests to a large extent either on the
conception of an average as a central tendency or on its cousin, a single measure that
describes the variability of a group of observations.

Distributions with Outliers

Consider cases where there are outliers that we decide should be removed from
the data set. In the case of weighing, suppose a typical observation differs from the
mean weight by something like 1 mg. If one of our observations was 5 mg away
from the mean, most people might think it sensible to omit that value in calculating
the mean. Two ideas seem implicit in this thinking: (a) that “true” measurement
error is associated with weighing on that scale and (b) that some different process
can sometimes generate observations with unusually high measurement error. Only
with such an implicit model can we consider, let alone decide, that an extremely
deviant observation must have been due to nonrandom error (e.g., misrecording the
observation or having a finger on the pan). Similarly, if we had one or two height
observations that were 60 cm from the mean, we might disregard them in certain
analyses as resulting from a process different from the process producing the rest of
the data (e.g., from a mutation or birth defect). Here again, this makes sense only if
we have some implicit model of a typical (male or female) height from which
individual observations differ by something like “random genetic and/or
environmental variation.” We can then regard extremely tall or short people as not
fitting this model—as resulting from a somewhat different process and therefore
calling for a different explanation. For these same reasons, Biehler (1994, p. 32)
suggested that “symmetrical unimodal distributions are something distinctive,” and
deviations from them require additional modeling.

Distributions with Unusual Shape

Continuing with the example of men’s heights, consider the case perhaps
furthest from the ideal, where the histogram of men’s heights is bimodal. We would
be reluctant in this case to interpret any average as a central tendency of men’s
heights. Why? With a bimodal histogram, we would be doubtful that the men we
were looking at comprised a simple process, or “natural kind.” Rather, we would
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suspect that our batch of men consisted of two distinct groups and that we could not
make any useful statements unless we uncovered some underlying variable that
distinguished the two. A similar but somewhat less severe problem would result if
the histogram was unimodal but the variability in the group seemed enormous (e.g.,
if men’s heights from an unknown country varied from 60 cm to 900 cm with a
mean of 450 cm). Given the huge variability in this case, we would question
whether the data came from a coherent process and whether it made sense, therefore,
to use an average to represent it. Of course, people’s intuitions about whether
variability is enormous may differ and are likely to depend on the model they have
of typical variability (or indeed whether they have any conceptual model for
thinking about sources of variability).

Comparing Groups with Skewed or Differently Shaped Distributions

When comparing two histograms, say of men’s and women’s heights, we run
into difficulties when the histograms are of different shape. Imagine, for example,
that the men’s heights were positively skewed and the women’s heights negatively
skewed. Because there is clearly something different about the variability in each
group, we would be reluctant to compare the two groups using their averages. That
is, unless we could generate a model of why the groups’ histograms differed in
shape and, as a result, conclude that the different shapes were just two versions of
random error, we would probably be wary of viewing the difference between the
two averages as representing something like the “gender effect on height.”

Consider the comparison of differences in income from one decade to another,
where both histograms are highly skewed with long tails out to the right. If the
histograms have the same variance and the same shape, we claim it is reasonable to
accept the shift in central tendency as an estimate of the actual change in income for
the group, even though we might have misgivings about using the average for either
group as the best measure of actual income. That is, even though the variability in
each group may not match our ideal view of “noise,” we can at least convince
ourselves that it is the same noise process in both groups. Of course, even though
one histogram is a horizontal translation of the other, it does not necessarily mean
that income has improved the same amount for each individual (or each type of
individual), give or take random error. Indeed, a finer analysis could indicate that
certain groups have become better off while other groups have not changed or have
even become worse off. It is worth noting, however, that many such arguments
about why looking at the differences between group averages is inappropriate or
misleading rely on the perception that the groups are, in some sense, not “natural
kinds” (e.g., that the processes determining incomes of poor people are different
from those determining incomes of rich people). Nonetheless, these arguments are
usually most compelling when we can identify natural subgroups in the larger group
and can show that the changes in the averages in these subgroups differ from each
other (e.g., the rich got richer and the poor got poorer, or different things happened
to Blacks and Whites).
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Another classic difficulty involves comparing two averages when the
distributions differ in spread. For example, what if Country A not only has a higher
mean income than Country B but also has a higher standard deviation? This would
call for more serious modeling of the variability. A special case that would make it
conceptually easier to compare the averages of the two groups would be the
situation in which the difference in standard deviations was commensurate with the
difference in means (ideally, the ratio of standard deviations would be equal to the
ratio of the means). In that case, we could view the effect as multiplicative rather
than additive, since Country A’s typical income would be equal to Country B’s
multiplied by a factor that represents the effect(s) that distinguish A from B. And it
would be reasonable to assume that the same multiplicative factor also applied to the
noise process.

Summary of Analyses of Nonstandard Cases

As we have implied in our argument above, we do not necessarily see these
nonstandard cases as problems for the type of framework that we are advocating.
Indeed, we think that the idea of central tendency of a process allows us to (a)
decide to eliminate an outlier or break data into suitable subsets, (b) come up with a
conceptual model that explains why the groups are asymmetric or differ in spread or
shape, or (c) decide that there is little we can sensibly conclude about the differences
between the two sets of data.

Let us summarize by asking what we could conclude about the difference in
men’s and women’s heights from the distributions we described earlier that were
skewed in opposite directions. We assert that we could conclude nothing without
some conceptual model. If we were trying to make a statement about genetic gender
differences, for example, we would have to be convinced that everything else was
random and that, for instance, we could not explain the mean height difference as
resulting from gender differences in diet. In other words, there is virtually nothing
about analyzing data that is model-free. Some may regard this as a radical proposal,
but we claim that a mean or median has little heuristic value (and is likely to have
little meaning or heuristic value for the student) unless we can conceive of the data
coming from some coherent process that an average helps to elucidate.

IMPLICATIONS FOR STATISTICS EDUCATION

The idea of noisy processes, and the signals that we can detect in them, is at the
core of statistical reasoning. Yet, current curricula do not introduce students to this
idea, instruments meant to assess student reasoning about data do not include items
targeting it, and statistics education researchers have not given it much attention. If
our argument is valid, then critical changes are called for in education research, the
formulation of education objectives, curriculum materials, teacher education, and
assessment. These are tightly interrelated components of educational reform. If we
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fail to advance our efforts on all these fronts, we run the risk of continuing to lose
the small ground gained on any one of them.

Accordingly, we describe here what we see as essential components of a signal-
versus-noise perspective and offer suggestions about how we might help students
(and future teachers) develop these ideas. We do not aim our speculations at
curriculum designers or teachers in the hope that that they will implement them.
Instead, we intend them for researchers and others who are considering what big
ideas should guide our standards and curriculum objectives, for those designing and
running teacher institutes, and for those developing assessment frameworks and
instruments.

Using Repeated Measures

According to our analysis, processes involving repeated measures are easier than
other types of statistical processes to view as part signal and part noise. This
suggests that to establish the signal-versus-noise interpretation of various statistical
measures, we initially involve students in investigations of repeated measures.

Current curricula make little use of repeated measures. Perhaps this is because
many of the prototypical situations, such as our weighing example, can be somewhat
boring and seemingly pointless unless they are introduced in meaningful ways.
There are many suitable and potentially interesting contexts.13 In the later grades,
these include a number of high-stakes scientific and political issues. For informed
public policy, we need good estimates of the thickness of the ozone layer, of
dissolved oxygen in rivers, of concentrations of atmospheric CO2. Statistical control
of manufacturing processes provides another context in which it is relatively clear
why we need to track a process by looking at its outputs. Of course, time-series
analyses are complex, and we need more research to help determine the kinds of
questions regarding them that introductory students can fruitfully explore.

Lehrer, Schauble, and their colleagues have employed some interesting repeated
measure contexts with younger students. For example, students in a second-grade
class designed cars to race down a track (Lehrer, Schauble, Carpenter, & Penner,
2000). During trial runs, students became unhappy about a decision to base a claim
about a car’s speed on a single trial. Frequently, something would happen to impede
a car—for example, it would run up against the track’s railing. The agreed-on
remedy was to race each car five times. Not surprisingly, the students could not
agree later on how to get a single measure of speed from the five trials. However,
their proposal of multiple trials was, by itself, suggestive of some notion of signal (a
car’s actual top speed on that track) and noise (its observed times resulting from
unpredictable events).

This classroom episode suggests an important distinction. That is, a student
might perceive data as comprising signal and noise and yet not necessarily view a
statistical measure such as an average as an acceptable indicator of signal. We
would expect that with processes involving repeated measures, students would tend
to think of each measurement as a combination of signal and noise, particularly if
sources of measurement error were easy to identify, as in measuring length with a
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ruler. But these same students might not be likely to think of an average of repeated
measures as indicative of signal (any more than the early astronomers were). Thus,
the instructional challenge is how to help students interpret measures such as
averages as indicators of central tendency. Taking a clue from the historical
development of the concept, it would seem fruitful to have students explore the
relative stability of various indicators in different samples.

Explorations of Stability

The idea of stability is closely related to the idea of signal. If the weight of an
object is not changing from trial to trial, it seems reasonable to expect that a good
indicator of its weight should also not vary much from sample to sample. Recall that
it was observing the stability from year to year of such things as birth and death
rates that led Quetelet to begin regarding these rates as indicators of prevailing and
relatively stable societal conditions, and to make the analogy to means of repeated
measures. Similar investigations by students could set the stage for interpreting
averages as indicators of signal.

A method frequently used to demonstrate stability is to draw multiple samples
from a known population and evaluate particular features, such as the mean, across
these replications. However, we expect that these demonstrations are often
conducted prematurely—before students have understood why one is interested in
the mean. Furthermore, in real sampling situations we never do these repeated
samplings, which leaves many students confused about what we can possibly learn
from this hypothetical exercise. The following three alternative methods of
exploring stability appear promising on the basis of their use in classrooms with
students as young as 8 years old.

Comparing Different Measures

In this approach, students compare the relative accuracy of different
measurement methods. Lehrer, Schauble, Strom, and Pligge (2001) used this
approach with third and fifth graders, who measured weights and volumes as part of
a study of densities of different materials. The students explored several different
ways to measure each attribute. They did this by using each method repeatedly to
measure the same object. The students came to favor those methods that produced
less variability in these repeated measures. Having established what measurement
technique they would use, students then considered various proposals of what to use
as, for example, the volume of a particular object. The problem, of course, was that
even with the same measurement method, repeated measuring gave the students a
range of values. They ultimately decided to discard outliers and compute the means
of the remaining observations as their “best guess” of the weights and volumes of
these objects.
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Observing Growing Samples

Another way of exploring stability is to have students observe a distribution as
the sample gets larger. We tested this approach recently in a seventh-grade
mathematics class. Students had conducted an in-class survey to explore whether
boys and girls were paid similar allowances. While comparing the two distributions,
one student expressed reservations about drawing conclusions, arguing that she had
no idea what the distributions might look like if they collected more data. Her
classmates agreed.

To help the class explore this issue, we constructed an artificial pond filled with
two kinds (colors) of paper fish. According to our cover story, a farmer wanted to
determine whether a new type of genetically engineered fish grew longer, as
claimed, than the normal fish he had been using. Students “captured” fish from the
pond, reading off fish type and length (which was written on the fish.) On an
overhead display, we constructed separate stacked dot plots for each type of fish as
students read off their data. After about 15 fish had been sampled, we asked students
what the data showed so far. Students observed that the data for the normal fish
were clustering at 21–24 cm, whereas the data for the genetically engineered fish
were clustering at 25–27 cm. Then we asked them what they thought would happen
as we continued to sample more fish, reminding them of their earlier reservations
with the allowance data. Some said that the stacks would become higher and the
range would get bigger, without mentioning what would happen to such features as
the general shape or the location of the center clump. However, other students did
anticipate that the center clusters would “grow up” but would nevertheless maintain
their approximate locations along the horizontal axis. The latter, of course, is what
they observed as they continued to add more fish to the sample distributions. After
the sampling, we showed them both population distributions along with their sample
data, calling their attention to the fact that the centers of their sample distributions
were quite good predictors of the centers of the population distributions—that these
stable features of the samples were signals.

Simulating Processes

A third way to explore stability is to investigate why many noisy processes tend
to produce mound-shaped distributions. Wilensky (1997) described a series of
interviews that he conducted with graduate students who were exploring this
question through computer simulations. We conducted a similar investigation with
fifth-grade students in an after-school program on data analysis. In analyzing a data
set on cats (from Rubin, Mokros, & Friel, 1996), students noticed that many
frequency distributions, like tail length and body weight, were mound shaped. As
part of exploring why this might be, students developed a list of factors that might
cause a cat’s tail to be longer or shorter. Their list included diet, being in an
accident, and length of father’s and mother’s tails. Using this list, we constructed a
spinner to determine the value of each factor for a particular cat’s tail. One student
might spin +2 inches for diet, +3 inches for mother’s contribution, –2 inches for an
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accident, and so on (Of course, each student wanted his or her cat to have the
longest tail.) Before they began spinning, students predicted that if they built 30 cat
tails in this way, they would get about equal numbers of cats with short, medium,
and long tails. After several trials they noticed they were tending to get medium
tails, which they explained by pointing out that you would have to be “real lucky” to
get a big number every spin, or “real unlucky” to get a small number every spin. As
this was our last session with these students, we could not explore what they might
have generalized from this experience; but we believe that understanding why such
processes produce normal-shaped distributions is a critical part of coming to trust
how process signals rise up through the noise.

Group Comparison

We have speculated that it is often easier to regard the difference between two
averages as a central tendency than it is to think of a single average that way. This
suggests, perhaps somewhat counterintuitively, that rather than beginning
instruction by having students explore single distributions of individual values, we
instead might fruitfully start with questions involving group comparison. Some
support for the benefit of having even young students grapple with comparison
problems comes from accounts from teachers of data analysis in the elementary
grades (Konold & Higgins, 2003). Similarly, all the problems in the middle-school
materials developed by Cobb, McClain, and Gravemeijer involve group comparison
(Cobb, 1999; Cobb, McClain, & Gravemeijer, 2003). As Watson and Moritz (1999)
pointed out, some of the benefits of comparison contexts are undoubtedly related to
their being more interesting and allowing students to see more clearly why the
question matters and why averages might be useful. But in addition, we expect that
in a comparison situation, students can more easily view averages of the individual
groups as summary measures of processes and can readily perceive the difference
between those measures as some signal rising through the din of variability.

Conducting Experiments

Many educators have touted the benefits of students’ collecting their own data
(e.g., Cobb, 1993). Among the expected advantages are increased student interest
and the rich source of information that students can draw on as they later analyze
and reason about the data. There may be additional benefits to having students
design and run simple, controlled experiments. One benefit derives from the fact
that experimental setups involve group comparison. In addition, we speculate that
data from experiments are easier than observational data to view as coming from a
process. As experimenters, students take an active role in the process—for example,
by fertilizing one group of plants and comparing their growth to that of an
unfertilized group of plants. Even quite young students can understand the
importance in such cases of treating both groups of plants the same in all other
respects (Lehrer, Carpenter, Schauble, & Putz, 2000; Warren, Ballenger,
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Ogonowski, Rosebery, & Hudicourt-Barnes, 2001). They then observe firsthand that
not every plant in the fertilized group responds the same and that the effect of the
fertilizer becomes evident, if at all, only when comparing the two groups. With
observational data, students must reason backwards from observed differences to
possible explanations for those differences, and their tendency in explaining the data
is to offer different causal accounts for each individual value. With the experimental
setup, students first see the process and then the data resulting from it, a difference
in perspective that may help them focus on the class of causes that apply uniformly
at the group, as opposed to the individual, level.

CONCLUSIONS

We fear that some readers will hear in our analysis and recommendations a call
to abandon the teaching of noninferential exploratory methods of data analysis and
to eschew data from other than well-defined samples. In fact, we believe that we
should begin teaching informal methods of data analysis in the spirit of EDA to
students at a young age. Moreover, we are not recommending that the teaching of
data analysis should be grounded in, or necessarily headed toward, the technical
question of drawing formal inferences from carefully constructed samples.

We agree with Tukey (1977) that we should not, as a rule, approach data with
the knee-jerk desire to model them mathematically. Rather, our objective should be
more general—to learn from them. For this purpose, being able to display data
flexibly and in various ways can lead to interesting insights and hypotheses, some of
which we may then choose to model more formally (Cleveland, 1993). It is this
sensible approach to the general enterprise—not only to how but also to why we
collect and explore data—that we believe is most important to convey to students in
early introductions to statistics.

It is important that we keep in mind, however, that most of us who regularly use
exploratory methods of data analysis have strong backgrounds in inferential
methods. When we approach data exploration with fewer assumptions, we often set
aside, for the moment, much of the power of the mathematical models of statistics.
But to play data detective, we have a host of tools and experiences to draw on, many
of which stem from our knowledge of the mathematical models of statistics. As
Cleveland (1993) observes, “Tools matter (p. 1).” The tools that he was referring to
were methods of displaying data. We would add that underlying the skillful use of
such graphical tools is the skillful use of conceptual ones, which matter even more.

Our references to the pioneering work of Quetelet were meant to point out that
the early users of means did not regard them simply as ways to describe centers of
distributions, which is how some today (misleadingly) characterize them. Recent
histories of the development of statistics (Hacking, 1990; Porter, 1986; Stigler,
1986) portray the early innovators of statistics as struggling from the beginning with
issues of interpretation. In this regard, Quetelet’s idea of the “average man” was a
way to take the interpretation of a mean as a “true value” of repeated measures and
bootstrap it to a new domain—measurements of individuals—for which the mean
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did not initially make much intuitive sense. We believe that learning to reason about
data requires students to grapple with the same sorts of interpretation issues; in the
process, they need to develop conceptual (not necessarily mathematical) models of
data that can guide their explorations. The idea of data as signal and noise,
physically embodied in the workings of the Galton Board (see Biehler, 1994), is
perhaps the most fundamental conceptual model for reasoning statistically. Future
research should help us learn how the idea develops and how we can foster that
development in our students.

NOTES

1. As George Cobb (1993) remarked, “If one could superimpose maps of the routes taken by
all elementary books, the resulting picture would look much like a time-lapse night
photograph of car taillights all moving along the same busy highway” (p. 53).

2. David Krantz (personal communication, December 13, 2001) shared with us his response
to the question, “Do we really need the mean in descriptive stats?” which had appeared
on a data analysis listserv. “I’m not very clear on what is meant by ‘descriptive statistics.’
To be honest, I don’t think there is any such thing, except as a textbook heading to refer
to the things that are introduced prior to consideration of sampling distributions. Any
description must have a purpose if it is to be useful—it is supposed to convey something
real. The line between ‘mere description’ and suggesting some sort of inference is very
fuzzy.”

3. Many use the term central tendency as a synonym for average or center. When referring
to central tendency in this article, we have in mind the particular definition specified here.

4. Adopting this perspective, we will generally refer to processes rather than to populations,
to signals or central tendencies of processes rather than to population parameters, and to
estimates of signals rather than to sample statistics. We use the term process to refer both
to processes that remain relatively stable over time as well as to stochastic processes,
which can change quickly over time.

5. However, Frick (1998) argues that the difference between processes and populations is
more than terminology, claiming that the tension between theoretical descriptions of
random sampling and what we actually do in practice could be resolved if we thought
explicitly of sampling from processes rather than from populations.

6. The maximum score on the reading component was 500, and the standard deviation was
50.

7. See Bakker (2001) for a review of the historical origins of various types of averages and a
discussion of parallels between these ideas and the development of student thinking.

8. There are good grounds for considering the idea of mean as balance point as an
interpretation. This interpretation figures centrally in mechanics, where the mean is a
measure of center of mass. But in the statistics texts that we examined, the idea of mean
as balance point seemed to be used solely as a way to visualize the location of the mean
in a distribution of values and not as an interpretation as we have defined it.

9. We have to be careful using this logic. For example, mean income would be a different,
and probably better, indicator of the power of the economic system to take care of its
citizens if the wealth were in fact distributed equally.
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10. Of course, both differences may reflect both nature and nurture.
11. It is possible that genetic differences may also (or instead) be reflected by differences in

variability in the groups. Thinking about such differences, however, also requires
thinking about some sort of measure (e.g., the standard deviation or the interquartile
range) as a signal reflecting the typical variability in a group.

12. However, we should note that in the Bright and Friel (1998) study cited earlier, the two
distributions were non-overlapping, yet students did not use averages to compare them.

13. For several good examples of activities written around such processes, see Erickson
(2000).
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