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We show an example of a theoretical calculation with hidden constraints, which make the
results non-physical and misleading.  We also analyze the motion of balls rolling along curved
tracks.  Finally, we provide some recommendations for instruction based on this exercise.
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Figure 1.  Set-up showing balls A and B at the
start of their tracks.  vi is the speed of each ball

at the beginning of the tracks.
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Figure 2.  Plot of vx vs. t for both balls, with
average vx indicated for ball B.

Consider a race between two balls.  Both balls
start on separate horizontal tracks, and have the
same initial position and speed.  Ball A continues
along a horizontal track, while ball B descends into
a valley and then rises back to its original height
(see Fig. 1).  Both balls cover the same horizontal
distance.  Which ball gets to the end of its track
first?  This question was analyzed in two recent
Physics Teacher notes: Leonard & GeraceÕs ÒThe
Power of Simple ReasoningÓ [1] and Shakur &
PicaÕs ÒOn an Ambiguous DemonstrationÓ [2].

Leonard & Gerace use simple motion concepts
and graphs to show that ball B will always reach the
end of its track first.  The arguments are accessible
to students, and an actual classroom demonstration
of the situation is found to stimulate studentsÕ cu-
riosity and reasoning skills.  Shakur & Pica in-
voke a different form of argument Ñ one based on
manipulating equations derived for constant ac-
celeration Ñ and caution that the outcome of the
classroom demonstration is ambiguous (with either
ball winning the race, depending on the initial
conditions).  In this note, we re-assert that the appa-
ratus of Fig. 1 is in fact a useful classroom demon-
stration with an unambiguous outcome:  Assuming
that ball B never leaves its track and that it rolls
without frictional losses and without slipping at all
times, ball B wins the race every time.

Simple Reasoning
Following Ref. 1, we need only focus on the hor-

izontal component of velocity.  Both balls start with
the same horizontal velocity, call it vi.  For a well-
constructed apparatus (tracks neither too long, too
rough, nor too smooth), we can neglect energy
losses.  Ball A travels with a constant velocity of vi.
Focusing on the straight inclined sections of ball
BÕs track, we see that ball B picks up horizontal ve-
locity as it descends (since its speed is increasing)
and loses horizontal velocity on the ascent, ulti-
mately returning to exactly vi.  Ball B wins the race
because its average horizontal velocity exceeds vi
(see Fig. 2).

Note that this argument works whether the ball
is sliding freely (i.e., no friction) or rolling (with a
static friction force exerted but doing no work).  The
curved sections of the track, which are discussed be-
low, are assumed to be relatively short and there-
fore have been ignored in this kinematic argu-
ment.

Non-Physical Theoretical Calculation
Shakur & Pica model the track as being made

up of frictionless straight-line segments, so the
balls slide rather than roll, and the smooth valley of
ball B becomes a V-shaped depression.  The accel-
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Figure 3.  Smooth V-shaped track with
parabolic trajectory
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Figure 4.  Plot of horizontal velocity vs. time
for set-up shown in Fig. 3, assuming the ball is

constrained to stay on the track

a

r

θ

R = r + a

Figure 5.  Ball on convex circular section of
track, with r, a, θ and R labeled.

eration along each segment of track is constant and
known, so simple straight-line kinematics can be
used to determine how long each ball spends on
each segment.  Following the stipulations of the
problem, both balls start with the same initial ve-
locity vi, and both traverse the same horizontal
distance.  The resulting analysis shows that ball B
wins the race for small values of the initial veloc-
ity, but loses the race for large values, seeming to
contradict the simple reasoning above.  (See Ref. 2
for a sample calculation.)  Should we distrust sim-
ple arguments?  Not so quickly.

HereÕs the catch: The equations used by Shakur
& Pica assume that ball B stays on the track at all
times, even though it should leave the track after it
reaches the sharp edge (kink) at the top of the in-
cline.  (See Fig. 3)  This constraint requires a nor-
mal force to be directed toward the track at the kink
point, which can dramatically reduce the horizon-
tal velocity.  (The rail of a roller coaster, for exam-
ple, could provide such a constraint force.)  As the
initial velocity is increased, the constraint force
reduces the horizontal component of ball BÕs veloc-
ity enough to cause ball B to lose the race.  This in-
teresting result may be relevant to a bead on a wire
or a constrained roller coaster, but not to balls on
tracks.  If we plot the horizontal velocity vs. time
(Fig. 4), we see the non-physical discontinuities
caused by the constraint at the kinks.  The ball in-
stantaneously changes directions at each kink
point [3].

On at least two counts the calculation does not
faithfully describe the problem of balls on (even

frictionless) tracks.  First, a vertical jump in the
velocity versus time graph implies an infinite ac-
celeration, which is impossible.  Second, the calcu-
lation imposes dynamical constraints that alter the
motion from what we observe in the real world.

A Closer Look at the Curved Track Sections
To avoid discontinuities in ball BÕs velocity,

curved sections of track are needed at the entrance,
bottom, and exit of the valley.  A closer look at the
dynamics of a ball rolling on a curved track re-
veals interesting phenomena.  Consider a ball of
radius a that rolls down a convex circular section of
track whose radius of curvature is r, as in Fig. 5.



Greene & Leonard page 3

N

fs

W

(not to scale)
θ

Figure 6.  Force diagram for ball on curved
track.

Table I.  Angle at which ball begins to slip as a
function of the parameter k ≡ vi2/gR for the case
of a solid steel sphere (Icm = 2/5ma2) on a steel

track (µs = 0.7).

k
(–)

θslip
(degrees)

0.0 45.0

0.1 42.1

0.2 39.1

0.3 35.9

0.4 32.5

0.5 28.9

0.6 25.0

0.7 20.7

0.8 15.6

0.9 9.5

1.0 0

The three forces exerted on the ball are shown in
Fig. 6.   The gravitational force W is the only force
doing work on the ball.  Hence the speed of the ballÕs
center of mass (CM) can be found at any height (or
equivalently at any angle θ) by using conservation
of mechanical energy.  Note that the normal force
N is always smaller than the normal component of
the weight Wcosθ, because there must be a compo-
nent of the net force directed toward the center of the
circular arc.  Applying NewtonÕs second law to the
radial direction,

Wcosθ Ð N =
mv2

R , (1)

where m is the ballÕs mass, v is the instantaneous
speed of the ballÕs CM, and R is the radius of the
CMÕs trajectory.  As the ball moves down the track
and θ increases, the normal force N must shrink in
order to keep Eq. 1 satisfied.

Will the ball roll or slip?
The static frictional force fs provides the torque

needed to increase the spin of the ball as it speeds up
so that it can roll without slipping.  This force can-
not exceed µsN, where µs is the coefficient of static
friction.  Since N  is decreasing, an angle is
reached (call it θslip) where the value of fs needed to
keep the ball angularly accelerating exceeds µsN,
and the ball begins to slip.  We have calculated this
slip angle for the case of µs = 0.7 (the approximate
value for unlubricated steel on steel [4]), with the
ball being a solid sphere (moment of inertia, Icm =
2/5ma2).  Table I lists θslip as a function the dimen-
sionless parameter k ≡ vi2/gR, where vi is the ballÕs
CM velocity at the top of the circle (θ = 0).  If k > 1,
then gravitation is not sufficient to cause the cen-
tripetal acceleration needed at θ = 0, and the ball
flies off the track immediately.

Note that Table I pertains to the curved section of
track and not the straight inclines.  It can be shown
that a ball is more apt to slip on a curved track than
on a straight track that is tangent to it.  Hence if
ball B does not slip on the curved sections of its
track, it will necessarily not slip on the straight in-
clines.

Does the ball speed up or slow down horizon-
tally?

As the ball rolls along the curved track in Fig.
5, does it necessarily speed up horizontally?  To an-
swer this question, one must compare the horizontal
components of the normal and frictional forces.  If
Nsinθ exceeds fscosθ, then the ball will speed up
horizontally.  This is always the case on a straight
downward incline (i.e., r  = ∞ ).  If the track is
curved, it can be shown that, with the exception of
some fine-tuned counterexamples, the ball will
speed up horizontally as long as it has not yet
reached its slippage limit [5].  The horizontal accel-
eration along the curved sections of track is mani-
fested in the non-linear parts of ball BÕs vx vs. t
graph (see Fig. 2).

We emphasize that anyone wishing to build the
device of Fig. 1 as a demonstration apparatus
should design it so that the ball does not slip on the
track.  Slippage will cause some loss of kinetic en-
ergy, which could cause ball B to lose the race.  More
explicit design tips are included in Ref. 1.
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Here are a few of the lessons we can extract
from this exercise:

F Theoretical calculations are not demonstra-
tions.  Calculations, no matter how good they
are, are based on what we already know about
the physical world.  They assume that the world
behaves in a predictable way based on how well
we understand physical objects.  Calculations
contain assumptions and approximations.
Demonstrations are the real thing.  Sometimes
they behave in unpredictable ways, because
sometimes we focus on features of the apparatus
that are less relevant than others for under-
standing it.  When this happens, the demon-
stration becomes a valuable learning experi-
ence, as we search for ways of understanding
and explaining it.

F Graphs can be more powerful than formulas.
We recommend a broader use of graphs in in-
struction and in problem solving.  For example,
students can use velocity vs. time graphs to vi-
sualize and interrelate an objectÕs displace-
ment, velocity, and acceleration, even in situa-
tions where equations would be unwieldy.  Also,
graphs often reveal features of a situation not
manifested by equations.  In this case, discon-
tinuities in vx vs. t reveal that we do not have a
simple situation here.

F Underlying assumptions and constraints
should be made explicit.  When done correctly,
calculations never give wrong answers, but
they might answer the wrong questions, because
the conditions and circumstances imposed or
assumed might not correspond to what was in-
tended.  Students can become confused when
assumptions are left unstated, and often they
are not aware of the assumptions they are mak-
ing when analyzing a new situation.  In the
case of this theoretical calculation, we have
seen that unintended constraints on the motion
of balls on tracks can lead to results that are

erroneous, not just quantitatively, but qualita-
tively.

F Contradictions should be fuel for further inves-
tigation. Sometimes two theoretical calcula-
tions seem contradictory.  At other times, theo-
retical predictions are contradicted by empiri-
cal observation.  Such discord should prompt
students to examine their models and assump-
tions more closely in order to resolve the diffi-
culty.

For most of us, the beauty of physics is its sim-
plicity, its deductive power, and its faithfulness to
the real world.  There is a delicate balance among
these characteristics.  Too simple a model will not
accurately describe reality, while taking into ac-
count all the details of a physical system renders
the description too complicated.  Demonstrations
are a wonderful opportunity for all of us Ñ students
and teachers Ñ to discover if our models of the real
world are simple enough to be useful and compli-
cated enough to actually predict the behavior of
something.  We learn which features of a situation
can be ignored, and which features cannot!  We be-
come more aware of hidden assumptions and of
how we think.  In other words, we learn how to re-
veal, challenge, and modify our models of the real
world.
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