
1

Constructing Data, Modeling Chance in the Middle School

Richard Lehrer1, Cliff Konold2, & Min-Joung Kim1

Vanderbilt University1, University of Massachusetts-Amherst2

Paper presented at the 2006 annual meeting of the American Educational Research Association,

San Francisco, CA.



2

Abstract

We describe the design and iterative implementation of a learning progression for supporting

statistical reasoning as students construct data and model chance. From a disciplinary

perspective, the learning trajectory is informed by the history of statistics, in which concepts of

distribution and variation first arose as accounts of the structure inherent in the variability of

measurements. Hence, students were introduced to variability as they repeatedly measured an

attribute (most often, length), and then developed statistics as ways of describing “true” measure

and precision. Both of these developments have historic parallels, and the intricate relation of

measure and data are also key components of ongoing professional practice (see Hall et al., this

symposium). From a learning perspective, the learning trajectory reflects a commitment to

several related principles: (a) constituting a learning progression as encounters with a series of

problematics; (b) representational fluency and meta-representational competence as

constitutents of conceptual development in a discipline; (c) invented measures as grounding

students’ understanding of statistics and (d) an agentive perspective for orienting student activity,

according to which distribution of measures emerges as a result of the collective activity of

measurer-agents. Instructional design and assessment design (see Wilson et al., this symposium)

were developed in tandem, so that what we took as evidence for the instructional design was

subjected to test as a model of assessment, resulting in revision to each.
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The discipline of statistics had its origins in problems of modeling variability (Porter,

1986; Stigler, 1986). History hasn’t changed all that much: Professional practices of statisticians

invariably involve modeling, and as in other sciences (see Giere, 1988), it is through model

contest that statistical concepts become more widespread and stable (Hall, Wieckert, & Wright,

this session). Another lesson of history is of particular importance to us: Reasoning about

variability was initially most prominently pursued in contexts of measurement error.

Astronomers, for example, suggested that distances between stars were fixed, but that errors

varied. Mathematical efforts to characterize the form and structure of measurement variability

gave rise to concepts and models still in use today, such as “least squares fit.” We aim to exploit

these historic relations by introducing children to modeling variability in contexts of repeated

measure.

Affordances of Measurement for Mathematizing Variability

Our choice of measurement as an entrée to variability is not grounded in mere homage to

history but in rich prospects for learning. One prospect is that measurement affords agency. If

measure is framed as activity, rather than as a product, students can mentally simulate the role of

agents and/or they can literally enact measurement process. As a consequence, foundations of

statistical inference, such as notions of repeated, random process (Liu & Thompson, 2002), have

counterparts in distinguishable forms of activity—forms that students can readily identify. For

example, stochastic process relies on the (mental) construction of trial (Horvath & Lehrer,

1998)—the assumption of identity over repeated instances of a process. In measurement, trial

finds expression as the repeated activity of a measurer, or in the collective activity of a group of

measurers acting in concert. Qualities of measurement, such as its precision, have observable
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consequences for variability. For example, students can readily notice the difference in

variability when they use more or less well-machined tools (Petrosino, Lehrer, & Schauble,

2003). Agency mediates student apprehension of variability by making process transparent (e.g.,

individual measurers can recall qualities of method and measure that might lead to “mistakes” in

measurement), and it grounds its symbolic expression, in that students can readily relate

presentational qualities (e.g. hills in graphs) and measures thereof (e.g., medians as measures of

center) to specific forms of activity.

A related affordance of measurement is emergence. Presentational and representational

qualities of distribution can be viewed as emerging from the collective activity of agent-

measurers. Hence, a statistic, such as the median or mean, can be viewed readily as a measure of

central tendency (Konold & Pollatsek, 2002), and the explanation for such a tendency can be

attributed to the notion of a true or fixed value. Similarly, a statistic summarizing the spread of

the distribution can be readily interpreted as reflecting tools or methods employed by agent-

measures. A shape, such as the “normal” curve, can be thought of as the collective result of

measurers who over-shoot and under-shoot the true measure, but usually not by very much.

Thus, measurement appears to offer promising connections between case and aggregate views of

the data. We recognize that much has been made of the prospective problems that emergence

poses for theory development. Resnick (1997) argues that it is difficult to understand emergence

because of a bias toward expecting that structure must be determined by a central controller, and

Chi (2005) suggests related obstacles, chief among which is a difficulty reconciling the ontology

of different levels of an emergent process. Chi suggests that emergent processes are

(mis)conceived as “direct” processes. However, we consider emergence as a resource for, rather
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than as a menace to meaning, because we believe that students who understand how agents

function are less likely to confuse different levels or assume that there must be an agent-in-

charge.

Third, although each agent is individual, given similar means and tools, agents tend to

produce similar measures of the same attribute. “Close, but not identical” is a potential entrée to

the idea of interval, creating the potential to view measures within the interval as exchangeable.

Interval is foundational to the notion of density, which transforms data into ordered counts

within (ever decreasing) intervals. Distributions describe the density of data, and a wide range of

studies suggests the importance of distribution to statistical reasoning (Cobb, McClain, &

Gravemeijer, 2003; Petrosino et al., 2003; Saldanha & Thompson, in press).

Fourth, measurement affords an entrée to sampling: What might happen if the

measurement process were repeated? Because measurement processes are more transparent to

students than those in other contexts, such as the genetic recombination responsible for much of

“natural” variation, we believe that students are likely to understand that some regions of the

measured values are more likely to be reproduced than others. For example, measurer-agents

tend to come close to the true value of the measure, reproducing central tendency from sample-

to-sample.

Designing for Learning to Mathematize Variability

We designed a sequence of tasks and tools that exploited these contextual affordances

with the aim of supporting students’ efforts to develop a mathematical system for describing

variability. Our design was guided by heuristics that shaped but could not determine our choices.

Problematics. First, we conducted what Thompson (2000) refers to as a conceptual
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analysis. In this case, we made conjectures about concepts and practices that might play fruitful

roles in developing the mathematics of variability. As we describe later more fully, measurement

appeared to offer prospects for children to interpret variability by recourse to processes that

would be meaningful to them (Konold & Pollatsek, 2002; Petrosino et al., 2003). We imagined

situations and tasks involving measurement in which foundational concepts, such as distribution

and statistics, would be experienced as problematic. For example, many studies of statistical

reasoning examine students’ conceptions of the mean. It was our intention to create a context in

which students would grapple with the rationale and the need for a measure of center, rather than

to prescribe the mean as a solution to a problem that they did not yet experience as meaningful

(see Lesh, Hole, Hoover, Kelly & Post, 2000, discussion of principles for design of model

development sequences). The outcome of this analysis was a series of problematics, each linked

to a particular form of activity. For example, as we describe next, we were concerned that

students not treat shape as an ineluctable quality of the data, so we developed activities in which

different senses of shape might conceivably arise.

Meta-representational competence. Students invented ways to inscribe/represent data so

that others could notice what they viewed as important qualities of the data. This tactic was

intended to foster representational fluency (Greeno & Hall, 1998). We anticipated that by

inventing displays of data, students could recognize that visible qualities of data, such as its

shape (which is often treated transparently in traditional curricula), are a consequence of

representational choices, and not only qualities of the data. We also asked students to compare

and contrast their invented displays, with an eye toward promoting meta-representational

competence (diSessa, 2004). We anticipated that comparing and contrasting student inventions
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would clarify relations between visibility of qualities of data and representational choices. Some

displays highlighted some features of the data, even as they obscured others. We were especially

interested in helping students understand how displays that grouped data worked to produce a

shape characteristic of many measurement situations (the “normal”), because this shape could be

readily related to measurement processes and measurement errors.

Invented measures. Third, students invented measures of the qualities of distribution as a

means to render statistics as sensible summaries. When inventing measures, students consider

which aspects of the distribution are worthy of attention (Petrosino et al., 2003; Schwartz &

Martin, 2004). Such attention focuses students on the role and function of statistics; armed with

such knowledge, they can come to appreciate the problem and the trade-offs that conventions,

such as the mean or variance, represent.

Changing the representational landscape.  Students first used familiar paper-and-pencil

tools. Our intention was to rely on these traditional means to make certain aspects of data, such

as the shape of the data, problematic. That is, we did not want to hand students solutions to

problems they had not yet experienced. After students had the opportunity to invent

representations and critique those developed by classmates, we introduced TinkerPlots!.

TinkerPlots! alters the representational landscape by introducing new notational systems that

are difficult, if not impossible, to create with paper-and-pencil. For example,

TinkerPlots!dynamically links intensity of color to quantity, making trends in the data easier to

spot.

Framing the Learning Progression

With these heuristics in mind, we framed a prospective sequence of tasks and tools that

could serve to introduce students to modeling measurement variability. First, all students
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measured the same object with the same tool and method. We anticipated that students would

expect all measures to be identical, thus grounding the investigations to follow in (mild) surprise.

Why didn’t everyone get the same measurements?

Students then designed a visual display of their measurements. Our intention was to

instigate exploration of potentially diverse senses of the “shape” of the data.  We engaged

students in a design critique. Students analyzed how their design choices highlighted some

features of data while placing other aspects in recession, and we promoted explicit comparisons

between designs. As we mentioned previously, design critiques were intended to support the

development of meta-representational competence--helping students come to see different types

of display as embodying trade-offs. We privileged shapes of data that resulted from considering

counts of data (i.e., the number of cases within a specified interval). As we suggested earlier, our

intention was to eventually support students’ reading of a distribution of values as a density.

Following the design critique, students invented measures of the “best guess of the real

length” of the attribute (e.g., arm-span or height of a flagpole) and of the precision of the data

(e.g., tendency for values to agree). By comparing distributions of measurements obtained with

less- and more-precise tools, students could explore the behavior of their invented statistics. For

example, when the variability decreased (more precise tools), did the invented statistic also

decrease? Our intention was to support a view of statistics as descriptors of qualities of

distribution (i.e., center and spread) and hence as ways of describing aggregates of data, but not

single values. Moreover, the context afforded links between process and distribution—as tools of

measurement changed, the center remained stable but the variability changed.

In the next phase of the instruction, students modeled their intuitions about sources and

magnitudes of error by employing chance devices—spinners. Observed values were modeled by
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summing the “true” measurement and chance errors of measure. Our intention was to introduce

the very idea of modeling as a way of making explicit students’ intuitions about chance

“mistakes” in measurement. Along the way, we anticipated that students would also have the

opportunity to consider relations between the outcomes of aggregates of trials and single trials.

The instructional sequence concluded with putting knowledge about distribution to use in

making inference. Students measured the apogees of model rockets in flight, created a

distribution of these measures of apogee, and then compared this distribution to another

distribution of measures taken with a modified rocket (the rocket’s nosecone was pointed instead

of round). Students considered whether or not the modification made a difference in light of

measurement variation. This concluding phase of the instruction introduced students informally

to statistical inference.

Investigating the Viability of the Learning Progression

We investigated the viability of the proposed learning progression by examining

children’s development of the mathematics of variability. Our investigation focused on changes

in the forms of and resources for reasoning, and also the conditions under which development

can best be supported. Thus, the investigation had the general form of a design study (Cobb,

Confrey, diSessa, Lehrer, & Schauble, 2003).

Design and development of an assessment system. In most design studies, day-to-day

decisions are made in light of evidence about student thinking, most often obtained from

inferences based on students’ discourse and gestures. Assessment is often considered after the

fact, as summative evidence of more widespread patterns of individual performance. However,

in the design studies we report, assessment played a central role, both in the conduct of the

studies and in the interpretation of the results. In fact, one of the anticipated outcomes is the
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creation of an assessment system. Our colleagues from the BEAR Center at the University of

California, Berkeley, will describe interactions between research and assessment more fully, so

our purpose is to describe briefly how assessment aided our investigation of the viability of the

proposed learning progression.

To create an assessment model, our conjectures about the forms of knowledge and the

nature of conceptual change underpinning learning about variability were expressed as progress

variables. Progress variables model trajectories of development. They demand that designers of

learning progressions make their commitments about conceptual growth explicit. To date, we

have constructed progress variables in 7 conceptual strands: (a) theory of measure (conceptual

landmarks for understanding the nature of units and scales of measurement, which are

prerequisite understandings for the learning progression), (b) modeling measurement, (c) data

displays, (d) meta-representational competence,  (e) concepts of statistics, (f) probability/chance

and (g) informal inference. Figure 1 illustrates the Data Display progress map, which lays out

our conjectures about prospective transitions in students’ conceptions, from case-based to

aggregate-based ways of constructing and interpreting data displays.

________________

Figure 1

________________

Although progress maps may appear to have a preordained character, in fact, they are negotiated

as the design study unfolds, so that progress maps take several design iterations to “settle.”

Hence, they serve as a visible trace of prospective conceptual landmarks for the design team.

The other components of the assessment system also support design iteration. Design

studies feature adjustments to instruction based on evidence, and formative assessments
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standardize the nature what counts as evidence. As our colleagues will describe more fully, the

formative assessments in this system summarize prospective instructional contingencies by

suggesting next instructional steps based on inference about current states of knowledge and

performance. Finally, summative assessments fulfill their traditional role in design studies. They

encapsulate the kinds of understandings that we hope students will develop, and they provide a

means for examining how widespread these understandings are in a sample.

Design Studies

To date, we have conducted three design studies in a Nashville public school with a

predominantly minority population (76% African American, Hispanic, and Kurdish). The school

serves about 300 students in Grades 5-8; 69% qualify for free or reduced-price lunch.

The initial design study featured 6 students selected by their teachers in grades 5 and 6 to

participate in a daily afternoon enrichment period. Criteria for selection varied by teacher, but the

intent was to represent a wide range of mathematics achievement. All students were volunteers

whom their teachers judged would benefit by participating. Students met three times a week for

approximately three months. Each lesson was 45 minutes. The second design study was

conducted to verify trends observed during the designing display phase of the first study. It was

conducted in one 6th grade classroom for ten days. The third design study is ongoing in one fifth-

grade classroom. To date, all lessons have been taught by a researcher (RL), with occasional

assistance from the classroom teacher. Sources of data include digital video, student artifacts,

and clinical interviews, collected during these multiple iterations of design.

Our purpose today focuses on (a) students’ inventions of representations and their

implication for coming to understand varying senses of the “shape” of the data; (b) students’

explanations for the effects of changes in measurement processes (which are experienced by
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individuals) on distribution (which is a collective and emergent outcome); (c) students’ invention

and revision of measures of central tendency and variability; and (d) students’ models of random

errors of measurement.

Inventing Representations

After each student measured the height of the school’s flagpole or the length of one

person’s arm-span, the measures obtained were collected and posted on a whiteboard in front of

the room. Students worked in small groups to design displays that showed, without words, all of

the data and any of the trends about the data that they noticed. Students posted their displays and

classmates, but not the designer, attempted to interpret their meaning. What was the display

trying to show? The teacher employed a language for fostering meta-representational

competence by asking the class to consider which features of the data were highlighted by a

particular display and which it made less obvious, or even hidden from view.

The most striking aspect of this phase of the instructional sequence was the variability of

student displays. We present a sample of these displays to illuminate a few themes that we

observed across the three design studies.

Highlighting order. Many students structured data by ordering. Some solutions were lists

(e.g., Figure 2), but others relied on space to convey a visual sense of order. The student solution

displayed in Figure 3, a type of array graph (Snecedor & Cochran, 1968), exemplifies the latter.

Bars or lines represented magnitudes of measurements. The designers, but not typically other

members of the class, indicated that plateaus showed modes or clusters of values.

________________

Figure 2, 3
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________________

Figure 4 is a hybrid of list and space. It orders the data and makes use of higher = greater

value. The designers mentioned that they wanted to evoke an image of climbing stairs.

________________

Figure 4

________________

Elaborating order. A second class of solutions appeared to elaborate on order by

highlighting relative frequency. Figure 5 illustrates this propensity. Students ordered the cases

and displayed their relative frequency as a square icon.  Note that the interval between case

values is not represented. When the teacher asked the students which values would not be likely

to recur if they measured again, students pointed to the lowest value. The display made the multi-

modal nature of these data visible. The statistics represented on the display are remembrance of

past classes—things that one did to batches of data. But after computing them (some incorrectly),

they never referred to the statistics again.

________________

Figure 5

________________

Constructing interval. Some students decided that what was most interesting about the

data were the measurements not there: the possible, but not realized measurements. To represent

this space of possibilities, they constructed displays that highlighted the missing values,

displayed in Figure 6. The frequencies listed in Figure 6 included “0,” where zero indicated

missing values in the interval described by the observed measurements. Hence, 0 = 14 refers to
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the number of values in the interval between 30 feet and 66 feet for which there was no case. The

1 = 9 refers to the number of values in the interval for which there was only 1 case.

________________

Figure 6

________________

Other student-designers employed a continuous axis to make the gaps or holes in the data

more visible. One exemplar is displayed in Figure 7. Here fifth-grade students drew a number

line from 118 to 193 and used size of texts and colors to differentiate acquired measurements and

missing values. Also, they underlined missing values with green lines, to highlight holes in the

data.

________________

Figure 7

________________

Grouping and ordering.  In the first two design studies, solutions that involved grouping

similar values into “bins” or equal-interval groups were relatively infrequent, and nearly always

involved some form of teacher assistance. However, in the most recent design study, fifth-

graders who interpreted and constructed frequency graphs in prior social studies lessons

predominantly developed graphs with groups of values. However, these graphs often departed

from conventions.  Designers of Figure 8 grouped measurements in 10s, but they ordered bins

based on heights of the bins to highlight which bin had the most measurements. Another group

of students divided all measurements into three groups. As a result, bin sizes were not consistent.

However, they highlighted that half of measurements were in the middle bin.
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________________

Figure 8

________________

Idiosyncratic. Idiosyncratic solutions were created just once and did not seem to have

counterparts in other student solutions.  For example, one team of fifth-grade students initially

ordered the data and then separated it into two groups, based on the parity of the measurement

(even, odd). When questioned, they could not relate their choice of data group to any goal. They

seemed to treat the data as numbers to be investigated, rather than as data.

Two sixth-graders went to great pains to declare that there was no pattern to the

measurements (see Figure 9). The students declared that the numbers did not “help each other.”

They meant that the numbers could not be described by any rule that they could detect (They

gave examples which included the definition of even vs. odd). They also objected to the

possibility that data could exhibit pattern, because their previous experiences of pattern featured

pattern blocks “square, triangle, circle.” The absence of a determinate rule appeared to imply an

ontological category of “not mathematics.”

________________

Figure 9

________________

Comparing Representations

Discussions about the variations in design helped develop an appreciation of different

senses of the “shape” of the data. The activity structure was one wherein students commented

about what a display showed about the data and what aspects of the data remained less visible or
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even hidden from view. The aim was to foster a sense of trade-off rather than good vs. bad

displays.

Students typically focused on individual displays and did not spontaneously engage in

comparative analysis. When prompted to compare two different kinds of displays, they often

referred to qualities such as icons employed by the designers. For example, students said that

they could see squares in one display (to show number of cases) but these were not used in

another display. Students often mentioned that a certain display was easy to be seen because it

had larger text size. More rarely, a student looked at a display that listed all possible

measurements on a number line and said, “They put numbers in between, so you can see how far

they went.”

Yet the diversity of display offered many opportunities for the teacher to highlight other

fruitful comparisons (from a mathematical point-of-view). For example, the construction and use

of interval was made more visible, simply because some student solutions accounted for gaps

and holes in the data while others ignored them. Some student solutions included groups or

“bins” of values, which resulted in a very different sense of the shape of the data when contrasted

to array graphs or lists. However, they might also juxtapose them without regard to the entire

range of the interval. That is, students arranged values in order, such as 10’s, 20’s, and then

juxtaposed 40’s, when there were no values in the 30’s. The resulting display highlighted clumps

of values but made “holes” in the data invisible.

Inventing Measures: Center

Students invented measures of the “best guess” of the actual height of the school’s

flagpole or the real length of the arm-span of their teacher. In this measurement context, this

estimate is the center of the distribution.
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Many students struggled with the very idea of inventing of a measure. Some suggested

that the only reasonable approach was to ask an authority—a member of the custodial staff or the

manufacturer—to find the height of a flagpole. Others found the notion of representing many

measurements by a single value implausible. We seized these challenges as opportunities to

conduct conversations about qualities of good measures and of the need to be explicit about

one’s method, so that others could find the same measure. Students’ solutions generally fell into

three classes: (a) convention, fueled by prior knowledge but not well related to qualities of the

data; (b) reasoning about repeated values; and (c) reasoning about the center-clump.

Convention. In the first two design studies, four students calculated the mean because that

was what one did with a batch of data: “find the average.” They were unaware of any of the

properties of the mean, so we altered instruction to make some of its qualities more visible. For

example, students investigated the effects of extreme values on the mean. These students did not

entertain other conventions, such as modes or medians. In the current design study, no fifth-

grade student attempted to find the mean.

Repeated values. Many students reasoned that if two or more people agreed about a

measured value, then that value was more likely the “right” one, even when the data were

multimodal. For example, several groups of fifth-grade students (in the third, current design

study) treated the problem of multi-modal data by asking prospective users to chose the

“reasonable” one. Yet, they could not communicate any criteria for establishing reason.

Center clump. The majority of students who did not have a prior orientation to the mean

invented analogs to the median. Their reasoning was guided by the appearance of a center clump

in the data, when the data were grouped and ordered. Students were attracted to the relative

frequencies of the values in the data, likely because these values literally occupied more space
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(e.g., they were higher). Most solutions involved finding the middle value of this center bin, a

workable solution for measurement data. However, a few groups independently invented the

median, guided by a sense of middle as splitting the data into two parts of equal count.

Classmates objected when the median value was not instantiated by an actual measurement, but

were persuaded by appeal to the measurement process: The median represented a value that

might have easily been someone’s actual measurement. It was a “possible measurement.” This

form of student reasoning signaled a shift away from considering only cases toward considering

the aggregate.

Infrequently observed solutions/Hybrid solutions. One pair of fifth-grade students

invented a method that placed data into bins, determined the percentage of cases within each bin,

deleted the measures in the low percentage bins, and used the mode of the remaining cases as the

best estimate of the true measure of arm-span. Another fifth-grade student suggested the

midpoint of the distance between the lowest and highest values, the mid-range, as the estimate of

the true length of the attribute.

Juxtaposing different senses of half. The results of an ongoing formative assessment (a

few item quiz) suggested that many students interpreted their classmates’ solution of the median

to be a half-spit of the data located in the “middle” of a string of data. They apparently did not

consider the order of the data as critical, relying instead on the spatial center of the data

presented. Consequently, we decided to problematize “half” by contrasting the distance-based

image of the mid-range with the count-based definition of the median.  Students thought that any

estimate of the best guess of the length of the arm-span should be located in the center clump.

Their image for mid-range was a paper strip folded into two congruent lengths, an image familiar

to them from class work earlier in the year finding part-units of length measure. The fold line of
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this strip located _. But, what was the relation of this distance-based sense of half to the half

demarked by the median? If the mid-range was “halfway,” how could the median also be

considered half? How could counting result in a location in the center clump? We constructed

several small sets of imagined measurements with the lowest or highest value, which students

readily suggested were mistakes, in the center of the listed values. By simply counting, the

extreme values were considered best guesses of the true measure. Yet, this contradicted

children’s sense. This contradiction was resolved by re-examining the role of order in

determining the median, and by juxtaposing two different senses of “1/2-split” –one based in

distance and the other in position within an ordered sequence. We also took this opportunity to

investigate robustness of the statistics proposed—by investigating the effects of “one bad

measurer” on the estimate of true measure. (The mid-range declined in popularity when students

considered that just one student-measurer could shift the value of the mid-range out of the center

clump.)

Inventing Measures: Precision

Students invented measures of the “precision” of their measurements. Precision was

intentionally not well defined, so that students would be put into a position of attempting to

describe it. One sense of precision that many students developed was “closeness.” Relative

closeness of the data could be defined in many ways, and students were encouraged to articulate

just how they might measure closeness. TinkerPlots! was available to students during this phase

of the instruction. In the first and third design studies (the second did not include this phase of

instruction), students’ invented measures were anchored either in conceptions of distance, or in

conceptions of the relative compactness of the center clump.
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Distance-based solutions. The range was the most common invention and was

constructed primarily by the youngest students (the fifth-graders). In an attempt to address all of

the observed measurements, one fifth-grader proposed to order all the data, find the successive

pair-wise differences, and then find their sum as a representation of precision.

A sixth-grade student (Robert) first focused on the distance between the extreme values

and the middle of the distribution. He used the mean to represent the middle. His teacher upped

the ante of this difference-based idea by asking him, “How would you characterize the precision

of the group as a whole?” After thinking about this for some time, Robert suggested that he

would average the differences between the mean and each measurement. Distances

corresponding to over-estimates were positive and those corresponding to under-estimates were

negative. Robert proposed to find their sum and then to divide by the number in the sample.

Robert thought that this method would be “like the average,” except that it would indicate how

close the measures were, “on average.”  When he attempted to find the mean of the differences,

he was surprised that the sum was zero. (This is a property of the sum of differences between

each observation and the mean. It is a consequence of the definition of the mean.) Robert was

puzzled, but he reiterated that he thought his method was good for finding the distances between

each score and the mean. He plotted each difference with Tinkerplots!, and wondered what

might have gone wrong (See Figure 10)

________________

Figure 10

________________
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In light of class discussions about some estimates being over and some under the real

height of the flagpole, the teacher asked if Robert were more concerned about the direction, or

the magnitude, of each difference Robert mentioned that the direction of the difference was not

that important—some measures must be greater than the mean and others less. Hence, what

mattered was how far each measure was from the mean. The teacher built on this student insight

to introduce the absolute value function. Robert used the absolute value function in the

Tinkerplots"formula menu to generate the average deviation. He then plotted the absolute

values of the differences, and located their average value—the average deviation (see Figure 11).

________________

Figure 11

________________

A variant on this method was appropriated by a pair of fifth-grade students in the current

design study who found the differences between each observed value and the median. This

method was prompted by their consideration of potentially perfect agreement among the

measures. In this ideal case, they suggested that the spread would be indicated by zero. The

instructor asked how they might define their measure so that zero would result. The instructor’s

question bootstrapped students’ consideration of difference. Working from this basis, students

first obtained sums of the absolute values of the differences. Their confidence in this measure

was bolstered by its ability to differentiate between distributions of measurements where students

employed more precise and less precise tools (e.g., 15 cm. rulers vs. meter stick for arm-span).

The instructor asked students what they might expect if the number of measurers using the more

precise tool increased to 100 (about 3 times the original sample) and this precision was compared

to the less precise tool used by fewer measurers. The students noticed that use of their measure
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would mislead: ‘People will think that the more precise tool is worse than the less precise tool.’

(‘ denotes paraphrase). To solve this problem, one suggested the modal difference and the other,

the median. They settled on the median but had difficulty maintaining the relation between the

medians for the distribution of measures and of differences (see Figure 12). The instructor’s

suggestion that the median difference represented “typical closeness” appeared to stabilize this

distinction (meaning that when presenting to classmates, they were able to clearly articulate the

distinctions).

________________

Figure 12

________________

Center-clump solutions. A group of students claimed, “where the precision was where

most people had their numbers.” Then, they found that 50% of all measurements were in the 40s,

and 28% of all measurements were in the 50’s. So, they decided to use the percentage of

measures in the decade-interval containing the mean as their measure of precision. The teacher

worked further with one of these students to capitalize on the hat plot function of Tinkerplots"

to characterize this notion of center-percentage. First, the student displayed a 25-75 percentile

hat plot, like that displayed in Figure 13. Then, the student used the reference line function of

TinkerPlots! to find the values bounding this interval (44.6, 53.6) The student subtracted 44.6

from 53.5 and said that 8.9 was a measure of precision because it captured closeness. When more

precise tools were employed, the measure became smaller, in alignment with a “tighter” center

clump.

________________
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Figure 13

________________

Modeling Error

To date, we have engaged students in modeling error with a random device, a spinner, in

only the first design study conducted with a mixed class of fifth- and sixth-grade students. In this

study, students measured the height of the school’s flagpole.

Sources. Students in this class identified several potential sources of error. One was

“wobble,” the error introduced by slight variations as one tried to use a tool to line up or sight on

the top of the flagpole. Wobble results in prospective errors of angle of measure. For example, at

a distance of 50 feet away from the flagpole, a 1 degree error in the angle of the line of sight will

produce an error in the height estimate of the flagpole of about 2 feet, resulting in either

overestimates (+2 feet) or underestimates (-2 feet). Students did not know trigonometry, so the

instructor suggested this magnitude as a way of characterizing “a little wobble.” Students

mentioned that “medium” and “a lot” of wobble were much less likely. A second source of error

suggested by students was due to the contour of the ground. The tape measure employed to find

the distance between the base of the flagpole followed the contour of the ground, and this

introduced error as students attempted to stretch the tape and otherwise compensate for the

effects of contour. Students judged this error as less costly than wobble, and thus suggested

magnitudes within a foot as typical errors, with larger errors of 2 or more feet. The third source

of error suggested by students was the measure of their height, and it was generally agreed that

this error was the least consequential (although some students misunderstood the right triangle
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model and thought that shorter people were at a permanent disadvantage!). These were the

primary sources suggested by students.

Area models of chance. We introduced students to a ten-region spinner and asked them

how we might use the spinner to think about how likely each kind of error would be for a single

source. Most students seemed to have little idea about how one might make this mapping, and

one denied that it could be considered because the spinner and the measurements were not alike.

For this student, we created alternative investigations of the properties of spinners.

One student suggested that there would be a relation between the amount of space on the

spinner and the chances of making that kind of error. We followed up on this by asking students

to think of the relative proportion of a little wobble, a medium amount of wobble, and a lot of

wobble for the ten regions of the spinner. Students felt that most of the time there would be a

little wobble, and it would be hard to determine its direction. The instructor suggested that

perhaps 60% of the measurements would have this kind of error. Students then worked in small

groups or individually to assign regions to spinners. Some students partitioned contiguous

regions, others worked under the apparent assumption that partitioning non-contiguous regions

would be fairer. A typical solution was to assign 3 regions to a +2, 3 regions to a -2, a one region

each to values of -4, +4, -6, and +6.

Combining spinner results. After assigning regions to each magnitude of error to model

the chance of making that type of error (one spinner for each source), students worked in teams

to collect the results of each spinner for 30 trials. They summed the errors for each trial and

added these to the imagined “real” length of the flagpole. We noticed that students were often

surprised to find that occasionally the net error was zero, even when none of the simulated errors

was zero. They also were surprised to find that unlikely did not mean impossible. A few of the
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trials resulted in very large error sums. Even more surprising was that the resulting shape of the

distribution was like that obtained when they had actually conducted the measurements. As one

sixth-grader put it when describing the results of his simulation (of measures of the apogee of a

rocket launched in the last phase of the design study): “So that basically tells that all five of these

different kinds of error pretty much don’t do a whole lot to the damage of the original height.”

His comment was addressing the central tendency he observed in his simulation, which was like

that of the values observed in the collective measurements.

When we asked students to model a new situation, the distribution of measurements of a

rocket’s apogee, only two appeared to make substantial progress in constructing spinner models,

although all could readily acknowledge different prospective sources of error. Figure 14 displays

the results of some of the trials conducted by one of these students, who modeled five sources of

error, including new sources of “person” (sometimes you’re more careless) and “wind.” As we

mentioned previously, this student was impressed by the simulation’s recovery of the central

tendency despite even more sources of error (compared to his first simulation of the flagpole

scenario).

________________

Figure 14

________________

Discussion

The conduct of two iterations of this design study, with a third in progress, enables

contrast with a previous iteration of the design conducted by Petrosino, Lehrer, & Schauble
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(2003). In the previous design study, we worked with students whose teachers were engaged for

prolonged periods of time in thoughtful reform of their mathematics and science practice. This

institutional capacity resulted in students oriented toward understanding mathematics as a

sensible system for thought. Consequentially, this meant that practices that are cornerstones to

this learning progression for statistical reasoning, such as inventing measures and

representations, and engaging in conversations about their merits, were not entirely foreign to

them. In contrast, the three iterations of the design reported today are embedded in an urban

institutional structure with less capacity. Teachers are embarking on consideration of their

practices but have not yet consolidated their grip on new practices (Knapp, this session).

Students tend to be oriented toward mathematics as a calculation (Thompson), and practices such

as inventing representations or measures have no place in the epistemology of doing things to

numbers. Hence, the contrast between contexts (context here is meant to include histories of

mathematical learning) serves as a test-bed for the adaptive character of the design. How robust

is the design? What seems to make a consequential difference for learning?

We begin with points of similarity among the first and subsequent iterations of the

learning progression, because for us, these constitute conceptual replications. First, the context of

repeated measure grounds reasoning about distribution, because students can take the perspective

of an agent-measurer. From an agentive perspective, distribution emerges from the parallel

activity of many agents measuring the same attribute. Everyone does not get the same

measurement, because some agents are more mistake-prone than others (in these accounts, the

attribution of error is usually reserved for the other person). However, most agents are pretty

“careful,” so there are more measurements in the center than elsewhere. Thus, central tendency is

a consequence of the measurement process, and the focus of the tendency, the center, emanates
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from the invariance of the attribute. As one fifth-grader recently explained, the circumference of

a person’s head changed as they grow (she had in mind RL’s), but not in one day. So she felt safe

saying that the circumference of the head measured that day remained unchanged during the

course of the measurements. Changes in means of measure, such as changes in methods or tools,

have real consequences for agents engaged in measurement. Hence, students anticipate that use

of better tools or methods of measure changes the spread of the distribution. In sum, many of the

features of the distribution that are readily apparent (after due consideration of representation)

have counterparts in process. Distribution results from the outcome of a process and is not just

“out there” as a quality of a collection.

Second, developing representational and meta-representational competencies have

important conceptual consequences. The diversity of representations invented by students

supports the concept that the shape of the distribution is not a Platonic ideal, but rather, a result

of a particular set of choices made about what to attend to, and what to obliterate, in a system of

representation. Not all students fully grasp the idea of representational trade-off, but supporting

comparisons among representations provokes mathematically fruitful consideration of different

meanings of the “shape” of the data. Seeing hills and valleys is one thing, knowing how they are

produced and how they might be magnified or even eliminated is another. We strive for the

latter, and it appears that this is a consistent outcome when teachers deliberately instigate

comparisons among representations.

Third, inventing measures of what students can readily “see” in a set of data invites closer

inspection of the qualities of the data that contribute to the perception. Students’ invention of

measures of center and spread support consideration of just what one might mean by each. Thus,

there is an intimate relation between conceiving of the “centeredness” or “spreadness” of the
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distribution and its measure. What students see after inventing measures is often different than

what they saw before such invention. Thus, measure is an important cornerstone to quantification

(Lehrer, Schauble, Carpenter & Penner, 2000; Thompson, 1994). Inventing measures supports a

meta-conceptual development: What does it mean to measure and what are qualities of good

measurements? These developments are supported when students employ their inventions to

measure the attributes of new distributions that were formed when measurers used different

methods or tools. For example, students’ experience suggests that measuring the arm-span of a

person with a 15 cm ruler is more error prone than the same measure employing a meter stick

(fewer iterations lead to less error). Hence, it makes sense that the distributions have different

precisions and that the measure ought to reflect these differences. Measure allows too for a new

form of inquiry not as readily sustained by the eyes: How much more (or less)?

We turn now to bumps in the road, some of which we believe can be attributed to the

different histories of mathematical learning between the suburban and urban settings. First, the

nature of the measurement affects the transparency of the measurement process for students.

When students in the Petrosino et al. (2003) measured the heights of flagpoles, they were

familiar with properties of triangles. In contrast, although they had received instruction about

triangles, students in our first two design studies were not. Hence, the measurement model was

less transparent, and some students in the first design study in the urban school thought that

shorter people were more likely to make errors. The source of this misunderstanding is not clear

to us, but more than one student voiced it. Other sources of error were transparent to the students

(e.g., wobble), so this misconception was more unsettling than fatal. The remedy adopted in the

second iteration of the design study was to include instruction about triangles, so that the

measurement model would be more sensible. But this instuction took much instructional time,
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and although we valued what students learned, others might not be so enthusiastic. The remedy

in the third design study was to switch to direct measurement. Students measured the length of

their teacher’s arm-span, the circumference of a researcher’s head, and the area of another

researcher’s handprint. Because direct measure is also not transparent, these activities rested on a

base of prior lessons in measurement (see Lehrer, Jaslow, & Curtis, 2003) designed to support

the growth and development of a children’s theory of measurement.

Second, the pace of instruction has been much slower in the urban setting, because we

could not rely on classroom norms of mathematical explanation. Students were not used to

taking other students’ work into account, nor, as we suggested previously, were they comfortable

with the very idea that they could invent--anything. Statistics were experienced as received, not

as solutions to problems of measure, and representations were conventions found in books. We

know of no remedy for this, and in fact, would deplore such a remedy. But, because education is

a normative enterprise, we can foresee many classrooms in which the practices we advocate

would either not be welcome or would be appropriated in a manner that would result in lethal

mutation.

We conclude with a brief exploration of issues that we have encountered that multiple

instantiations have helped make more visible to us. First, we are interested in understanding

better how students might come to model chance errors of measurement. There are potentially

many obstacles, which include establishing the relation between area and chance for a spinner,

considering different sources of error, and conceptualizing long-term, repeated random

processes. However, our sense is that all of these challenges are less than that of establishing the

mapping between the phenomenon and the model. In related work, we have found it

advantageous to ground model-world mappings in resemblance, with gradual lifting from literal
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resemblance to representational systems (Lehrer & Schauble, 2005; in press). Modeling chance

in the context of measurement error imposes an additional burden: The relation between the

representing and represented worlds is syntactical, only. As one of our students stated plainly,

there is no resemblance—at all! Perhaps syntactic models will prove beyond the ready grasp of

most students of this age.

Second, although we have not addressed this issue here, we are exploring students’

conceptions of sample-to-sample variation under the guise of predicting what might happen if we

measured again. So far, we have spent more time with students’ conceptions of directed variation

(e.g., changes in methods, tools) than with undirected, random variation. We are uncertain about

how to build on students’ intuitions in mathematically productive ways in light of their

difficulties modeling error.

Third, as in any design study, there are a series of local contingencies that point toward

the need to examine conceptual development in greater detail, to conduct conceptual analyses

that were initially neglected. For example, as we mentioned earlier, children’s conceptions of

splitting the data in half instigated a contrast between distance- and count-based senses. The

former corresponds to the midpoint of the range and the latter to the median. We found the

contrast for children less transparent than we expected and so modified the design on the spot.

Fourth, the current work with the fifth-graders suggests a pathway for chance that

paradoxically begins with determinate conceptions. Many students initially attribute distribution

to mistakes made by measurers. Mistakes are considered volitional. If only the measurer had

been more careful. For example, one of the fifth grade participants in the current study predicted

that other measurers outside of the classroom would produce a much more scattered set of

measurements, because they had not had the advantages of participating in the class. “They” did
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not know that you had to consider the nature of units of measure, nor were they aware of the

virtues of uniform methods for measuring, etc. Volition was challenged by experiences of being

very careful yet still not completing agreeing about the measurements. No matter how hard one

tried, mistakes still occurred. We have come to think of this as a pathway to chance, as children

re-consider what at first appears completely determinate.
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Figure1. Construct: Data display



34

Figure 2. Simply ordering data
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Figure 3. Ordered value display
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Figure 4. Ascending values
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Figure 5. Ordered case frequency display
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Figure 6. What’s missing?
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Figure 7. Case frequency display with  missing values
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Figure 8. Ordered bin display
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Figure 9. No pattern!



43

Figure 10. Tinkerplots"  plot of signed differences
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Figure 11. Tinkerplots"  plot of absolute values of differences and average deviation
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Figure 12. Tinkerplots"  plot of absolute values of differences and median of the absolute

differences
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Figure 13. A 25-75 percentile hat plot
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Figure 14. Modeling sources of errors with spinners


