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In the November 2000 issue of TPT, W.H.
van den Berg1 shows us how students can

analyze dragging a box with a rope and deter-
mine the “best” angle for starting the box mov-
ing by finding the angle that requires the small-
est tension force.  Near the conclusion of that
note, van den Berg derives an expression for the
best angle by differentiating the tension force
with respect to the angle � and doing quite a bit
of algebra.  I would like to show readers a deriva-
tion that does not require calculus or algebra.  It
requires only some geometry, some trigonome-
try, and some “lateral” thinking.  Along the way,
I will introduce readers to an alternative way of
thinking about the normal and friction forces.
Upon reflection, we will learn something about
the possible limitations of the first viable repre-
sentation we choose to solve a problem, the value
of alternative representations, and how we as
teachers typically represent the three “constraint”
forces: normal, static friction, and tension.

A Calculus- and Algebra-free
Derivation of the Best Angle to
Drag a Box

The situation is shown in Fig. 1.  There are
four forces on the box: a gravitational force Fg =
Mg exerted by the Earth, a normal force FN ex-
erted by the floor, a static friction force F f s also
exerted by the floor, and a tension force FT exert-
ed by the rope.  

We are looking for the smallest tension force
needed to break static friction.  As described in
Ref. 1, the smallest force occurs when the person
pulls at a slight angle (�best) above the horizontal.
This reduces the normal and frictional forces
sufficiently without reducing the horizontal
component of the tension force so much as to

Dragging a Box: The
Representation of Constraints
and the Constraint of
Representations

make the other changes ineffective.  
The first step in finding the best angle is to

recognize that there are actually only three forces
exerted on the box.  What we conventionally re-
fer to as the normal and frictional forces are real-
ly components of a single force: the force exerted
by the floor.  The normal force is perpendicular
to the surface, and the frictional force is parallel
to the surface.

The second step is to recognize that when the
static friction force is maximal, the force exerted
by the floor points in a particular direction.  In
other words, no matter how large or small the
normal force is, the direction of the force exerted
by the floor is always the same, because the max-
imum static friction force is proportional to the
normal force (i.e., Ff s,max = �s FN).  When one
component changes, the other changes by the
same proportion.

The third step is to draw a “vector-addition
diagram” for the box rather than a free-body dia-
gram.  This is done by drawing the forces head-
to-tail and results in a vector representation of
the net force.  In this situation, because the ac-
celeration of the box is zero, the net force is zero.

THE PHYSICS TEACHER � Vol. 39, October 2001

Fig. 1.  Dragging a box.



And because there are three forces on the box,
the vector-addition diagram is a triangle.

Of the three forces on the box, only the gravi-
tational force is unchanging, so we start by draw-
ing it [see Fig. 2(a)].  The strength of the force ex-
erted by the floor is changing, but its direction is
not, so we represent it (for now) as a dotted line
[see Fig. 2(b)].  The angle this line makes with
the vertical is � = tan–1(Ff s,max/FN)= tan–1�s.

The third and final force is the tension force.
When the person pulls horizontally, for example,
the tension force is represented by a horizontal
arrow beginning at the dotted line and ending at
the tail of the arrow that represents the gravita-
tional force [Fig. 2(c)].  The result is FT = 
Fg tan� = �sMg, as expected.

To find the smallest force, we must ask our-
selves: What is the smallest arrow that can be
drawn beginning somewhere along the dotted
line and ending at the tail of the gravitational
force?  The answer is: The arrow that is perpen-
dicular to the dotted line.  This is shown in Fig.
2(d).  The angle that this tension force makes
with the horizontal is �.  Therefore, �best = � =
tan–1�s.  This is the same result that is usually
found using calculus and a considerable amount
of algebra.

We can also write down an expression for the
smallest tension force.  Again using Fig. 2(d), we

get FT,min = Fg sin� = �sMg/(1 + �s
2)1/2.  No cal-

culus and little algebra are needed for this 
result.

Other Examples

The simplest extension of these ideas is to the
analysis of a moving box.  The frictional force is
Ff k = �kFN, so again, the force exerted by the
floor has the same direction (relative to the floor)
no matter what the situation is, as long as the
box is sliding.  The best angle to drag the box is
now �best = tan–1�k, and the smallest tension
force is now FT,min = �kMg/(1 + �k

2)1/2.
Another example is shown in Fig. 3.  A block

is at rest on a rough wedge that is on a rough
horizontal surface.  The question here is: What is
the frictional force exerted by the horizontal sur-
face on the wedge?

The UMass Physics Education Research
Group has posed this question many times, to
both teachers and students, and the results high-
light the importance of the choice of representa-
tion while reasoning.  A surprising number of
people — even experienced physics teachers —
have difficulty with this situation because they
usually start thinking about the interactions be-
tween the block and the wedge, which leads
them to draw or imagine a conventional free-
body diagram for the block (not the wedge), as
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Fig. 2. Creating a vector-addition diagram.  (a) Gravitational force is unchanging.  (b) When stat-
ic friction force is maximal, force exerted by floor is in same direction regardless of FT.  (c) Tension
force when pulling horizontally.  (d) Finding smallest tension force.



shown in Fig. 4(a).
In this representation, there are three forces

on the block: a gravitational force Fg exerted by
the Earth, a normal force FN exerted by the
wedge, and a static friction force Ff s also exerted
by the wedge.  In part because free-body dia-
grams are seldom drawn perfectly to scale, and in
part because it is difficult to reason about the
horizontal components of these forces without
deeper analysis, students and teachers often con-
vince themselves that there is a net horizontal
force exerted by the block that must be balanced
by a frictional force on the wedge due to the hor-
izontal surface.  (It is uncommon for people to
realize that the horizontal components of FN and
Ff s must balance in order for the block to remain
at rest.)

Alternatively, if we think of the normal and
static friction forces as components of a single
force exerted by the wedge on the block, the
analysis becomes trivial.  In this representation,
there are only two forces on the block, and since
the block is at rest, these forces are equal and op-
posite, as shown in the free-body diagram in Fig.
4(b).

Avoiding any confusion about the frictional
force exerted by the horizontal surface, we see
that only a vertical force is needed to keep the
wedge at rest, because there is no horizontal
component to the force exerted on the wedge by
the block.  Therefore, no frictional force is exert-
ed by the surface on the wedge.

Comments

Many of us don’t change representations once
we’ve found a viable one, and the choice of rep-
resentation can often dictate how a problem is
solved.  As we’ve seen when looking for the
“best” angle to drag a box, if we use a free-body
diagram and treat the normal and frictional
forces independently, the only option is to use
calculus.  Yet the choice of representation can
mean the difference between making a problem
easy or difficult to solve, and students should be
constantly making choices about how they will
solve a problem before attempting a solution.  As
teachers, we can become overly programmed
when thinking about concepts such as force,
causing students to become even more con-
strained in how they analyze and reason about
situations.  

Alternative representations can bring out lim-
itations in how we conceptualize problem situa-
tions.  They also give students a second ap-
proach, which can improve their efficiency and
permit self-checking.  Finally, alternative repre-
sentations can enrich instruction by providing
additional links between ideas as well as oppor-
tunities to go beyond the conventional.  
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Fig. 3. Block at rest on a wedge.

Fig. 4. Free-body diagrams for block (a) in terms
of components of force exerted by wedge, and
(b) not in terms of these components.
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