Collaborative Group Techniques

Methods for teaching via small-group cooperative learning work

This document has been excerpted from Supplement A of the "Teacher's Guide to accompany Minds•On Physics: Motion" (cf. Minds•On Physics).


Collaborative groups and cooperative learning refer to a variety of structured classroom management techniques and grading systems developed and studied by Aronson, Johnson & Johnson, Kagan, Slavin, and others since the early 1970s. These terms usually do not refer to loosely structured group work in which students are told simply to "work together" on a problem or assignment. To emphasize the difference between unstructured group work and collaborative group work, groups are usually referred to as teams. Collaborative structures are content-free, and thus can be used in a variety of contexts.

Studies have shown that in well structured cooperative groups, students consistently learn many different subjects better than students in traditionally structured classrooms. Cooperative learning also has a number of psychological and social benefits, such as being exposed to other points-of-view, learning how to cooperate, having more positive feelings about school, having more positive feelings about themselves and others, and wanting their classmates to do well.

Studies have shown also that all students benefit academically from cooperative learning. Successful students show modest gains in performance and achievement, while historically unsuccessful students usually show tremendous gains when taught using cooperation as the primary motivator. Cooperative grouping lets students organize their thoughts in a less threatening context than whole-class discussions, and prepares students for sharing their thoughts with the class. Also relevant for Minds•On Physics is that students can make progress on exercises they would not be able to attempt alone.

Getting started with cooperative learning

Because students often lack collaborative group skills, it is essential to begin the school year with activities designed to target interaction skills and team building within the class. Students need to learn how to listen to other students, and to analyze and interpret what they are saying. Students must learn, for example, how to encourage others in their group to participate, how to ask questions, how to manage dominant personalities, how to monitor and modify the group dynamic, and how to communicate effectively. Unless these skills are targeted early in the year, cooperative learning is likely to fail.

Therefore, the focus of instruction at the beginning of the year should be on developing group skills, rather than on physics. This investment of time will yield huge dividends later in the year. For example, have students sit in a circle and have volunteers define what they think science is all about. Then require the person sitting on his/her left (or right, whichever you choose) to paraphrase the definition. Be sure to tell students the structure of the activity beforehand, and have the class discuss and reflect on the activity immediately afterwards. Another effective structure is to have a team of three or four students work on a problem together -- a problem from algebra, for example, that they should already know how to solve -- and have three or four other students observe the interactions. Afterwards, have everyone discuss what happened, and what didn't happen, as the inner group solved the given problem. (This is sometimes called Fishbowl.)

Some common collaborative group structures

There are literally hundreds of cooperative structures and dozens of books available to help teachers incorporate cooperative learning into their classrooms. The structures listed and described here are believed to be particularly useful with the Minds•On Physics materials and approach.

Deciding which structure should be used

Some structures are more compatible with certain activities or instructional goals than others. For instance, Fishbowl is good for developing skills; Pairs Check and Jigsaw are good for learning new material; and Word Webbing and Two-Box Induction are good for relating concepts. Also, do not introduce too many new structures too quickly; usually about one new structure per week is recommended.

Other advice

It is usually a good idea to have the details of a cooperative group activity worked out before class. You should know how students are to divide themselves into teams (e.g., by assignment, by drawing lots, or by personal preference); how many students should be on each team (2, 3, or 4, usually); what the team composition should be (heterogeneous or homogeneous; all male, all female, or mixed); which questions each team should work on; when the activity is officially over; how to bring the activity to closure; and how to grade the activity (if at all). Also, it's important that everyone has an active role within each team, and that there are "sponge" activities that teams can work on if they finish earlier than other teams. Finally, hang in there. It takes some perseverance for both students and teachers to get collaborative groups to work effectively, but the rewards are definitely worth the effort.


The following books and articles should help teachers incorporate collaborative learning. In particular, Cooperative Learning by Spencer Kagan has an entire chapter devoted to resources, including books on theory, research, and methods, manipulatives, video tapes, newsletters, and the names and addresses of some cooperative learning organizations.