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Randomness is one of the key concepts of probability theory and statistical
inference (Falk & Konold, 1992). We all feel we know what we mean when
we speak of “chance” and “randomness”. These concepts often serve us well
in scientific and everyday communication because of a general consensus
about their meanings (Falk, 1991; Green, 1989; Noether, 1987). Yet, random-
ness is one of the most elusive concepts in mathematics. It resists easy or precise
definition (Zabell, 1992). Nor can it be established for certain whether a
particular sequence is “truly random” (Ayton, Hunt, & Wright, 1989; Chaitin,
1975; Steinbring, 1991). Hacking (1965) was therefore a bit optimistic when he
suggested that the meaning of the word “random” could be “. .. answered briefly,
but it would take 100 pages to prove any answer correct” (p. 118).

The perplexing nature of randomness poses an educational dilemma. Shall
we forgo discussing the meaning of the concept in our teaching (relying on
students’ existing intuitions)? Or shall we endeavor to find a satisfactory way
of presenting randomness, undertaking the challenge of bringing up the
doubts and difficulties students will predictably have?

One possible solution is to introduce students to a meaning of randomness
that is both intuitively acceptable and agrees with the standard concept of
randomness as a process characterized by statistical independence (and
random sequences as the products of that process). Such an interpretation of
randomness is based on the mathematical concept of complexity (Chaitin,
1975; Fine, 1973, chap. 5). Despite sophisticated computational techniques,
the idea itself is amazingly simple: a random sequence! is one which cannot
be condensed, that is, it cannot be described by a program that is substantially
shorter than itself. A random sequence has, in fact, to be specified almost
symbol by symbol.

Another look at Green's randomness tasks

To demonstrate the complexity approach to randomness, we consider two
interesting problems used by David Green. He has used these in both his

e



research and his classes as a trigger for a teacher-guided discussion. Green
(1979, 1989) showed children a drawing of a 4x4 square roof tiled by 16 unit
squares. They were asked to imagine that 16 snowflakes had fluttered down
onto the roof, and were given the Piagetian task of marking 16 xs on the
drawing to show where they thought each snowflake would land. Figure 1
shows three distributions that, according to Green, children typically generate.
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Figure 1. Typical children’s drawings of snowflake distribution (Green, 1979,
1989).

The following ate characteristic verbal descriptions children give these
(respective) drawings:

(a) one per square,

(b) all around the edge,

(c) a random distribution.

One answer to the question of what “random”™ means is hidden in these
descriptions. Note that statements (a) and (b) are effective descriptors of the
location of the xs in the respective drawings. Indeed, if we ignore location
within a cell, distribution (a) can be reproduced exactly from the verbal
description. It would, however, be difficult to think of any shorthand descrip-
tion of distribution (c) that could be used to communicate the location of the
various xs. Disregarding the question of whether the distribution in (c) will
pass standard tests of randomness, we note that its description “random
distribution” is a shorthand expression that is used to replace an enumeration
of the contents of each cell, and it conveys the idea “there is no easy way to
describe this layout™.

In another problem, Green (1987) used the following binary sequences,
each comprising 20 symbols. Students were told that each sequence was
produced by a machine designed to mimic coin flipping. Their task was to
decide which of the machines (sequences) was fair (random) and which was
biased (nonrandom).

SHET HOTEHNE T HEESHST | T HT T BT
Z2HHHBRHKEHEHEHRITTTTTT T TTT
3 HHTHHTHHTHHTHHTHHTHH
4.HTTHHTTTTHTTHTTTTHTT
Green expects that only sequence 4 would be judged random, whereas the first
three are obviously patterned (i.e., nonrandom). Our personal experience
accords with Green's statement: while typing the four sequences for this article
we noted that it was quite easy to copy the first three sequences. We gave each
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of them one quick look and successfully copied it in one attempt. In contrast,
the reproduction of sequence 4 required significantly more time and careful
attention, with frequent viewings of the original sequence. Indeed, it was typed
in several “chunks” of about five characters each.

The characterization of a random sequence as one that is difficult to compress
or to reproduce captures well the conception of randomness as unpredictability.
Unlike sequence 1, which can be condensely describedby HTHT..., themeaning
of “...” would not be clear following the first few characters of sequence 4 (see
also Paulos, 1991, pp. 47-51). Random strings cannot be extrapolated because no
valid lawfulness can be detected to allow prediction.

Difficulty of encoding as a measure of randomness

The view of randomness as incompressibility has its hetitage in information
theory, a science developed mainly since World War II which studies the
transmission of messages. Its definition of randomness is based on the
observation that information embodied in a random series of symbols cannot
be compressed or reduced to a more compact form. More precisely, a series
of characters is random if the shortest computer program capable of reproduc-
ing it has about the same number of bits as the series itself. The length of the
shortest program is called the sequence’s complexity. It measures, in fact,
difficulty of encoding and serves to quantify the degree of randomness of (and
information contained in) the sequence.?

When the complexity measure is used to sort long sequences into random
and nonrandom (based on some reasonable predetermined cut off point), the
results are, in general, compatible with those of statistical tests for randomness
(which are also based on a predetermined “level of significance”). A detailed
exposition of the relation between the complexity and the statistical defini-
tions of randomness can be found in Fine (1973).

Perceived randomness and difficulty of enceding

The complexity interpretation of randomness has lately found its way into
philosophical and psychological writings (e.g., Attneave, 1959; Dennett,
1991; Falk, 1975; Garner, 1970; Simon, 1972) as well as into the popular
mathematical literature (Paulos, 1991). It has, however, received limited
attention as a possible psychological variable in accounting for subjective
judgment of randomness. Kahneman and Tversky (1972) have suggested that
random-appearing sequences are those whose verbal description is longest,
and that apparent-randomness is a form of complexity of structure. Still, to the
best of our knowledge, no research relating difficulty of encoding to perceived
randomness has been pursued by statistics-educators or psychologists.

The most prominent and consistent finding of the psychological research on
the perception of randomness of binary sequences (and two-dimensional
tables) is that people identify randomness with an excess of alternations
between the (two) symbol types (Falk, 1975, 1981; Lopes & Oden, 1987;
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Wagenaar, 1972). Sequences that are prototypically random (e.g., they
include the modal number of runs) are not perceived by subjects as maximally
random because the runs seem subjectively too long to be random. The well-
known gambler’s fallacy (i.e., the belief that tails is more probable than heads
after a sequence of successive heads) is, in fact, equivalent to the belief that
symbol types in arandom sequence should show frequent alternations. Similar
results are reported when subjects are asked to generate ot to simulate random
sequences (Bakan, 1960; Falk, 1975, 1981; Noether, 1987; Tune, 1964;
Wagenaar, 1972), although recent studies (Kareev, 1992; Rapoport &
Budescu, 1992) cast some doubt on the consistency and meaning of these
findings.

For every finite binary sequence, one can determine the relative frequencies
of the two symbol types and the conditional probability of change (or
continuity) after a given symbol. If there are n symbols in the sequence, the
number of opportunities for a change of symbol type is n-1. For example, the
sequence below comprises 21 characters. The number of possible changes in
symbol type is 20, while the number of actual changes in this sequence is 12,
as depicted.

XO0XX0X0X00X0000X0XXXX

The overall probability of alternation of the sequence, denoted P(A), is
obtained by dividing the number of actual changes in symbol type in the
sequence by n-1. In our example P(A)=12/20=0.6.

When the frequencies of the two symbol types in a long, random sequence
are equal, P(A) shouldbe close to 0.5. Finite sequences with P(A) values other
than 0.5 do occur, but they are less likely. Sequences deviating from P(A)=0.5
are equally probable in the two directions. This means, for example, that a
sequence with P(A)=0.7, which contains more alternations than expected, has
about the same probability of occurring as a sequence with P(A)=0.3, in which
there are fewer alternations (longer runs) than expected. It has been demon-
strated, however, that people generally regard sequences with P(A)=0.7 as
more likely to occur by chance than sequences with P(A)=0.3.

The function of apparent-randomness was obtained by Falk (1975, 1981).
Subjects were shown a set of 10 sequences of the same length (21). The
sequences comptised two symbol types whose frequencies in the sequence
differed by one. Their probabilities of alternation ranged from 0.1 through 0.2,
0.3, to 1.0 (a perfectly alternating sequence). Subjects were asked to rate each
sequence for randomness.? Apparent-randomness (AR) was measured by the
mean randomness rating of 219 subjects. AR, as a function of P(A), peaked at
0.6, instead of at 0.5, and it was negatively skewed (see Figure 2). As
mentioned, sequences with P(A)s equally distant from 0.5 were not judged
equally random.

The apparent-randomness function is compared in Figure 2 with an “objec-
tiverandomness” function of the sequences as measured by their second-order
entropy* (EN). The EN function is symmetric about P(A)=0.5 where it peaks.
There is a marked discrepancy between the two functions. Subjects’ ratings of
randomness do not closely match the objective randomness of the sequences.
The correlation coefficient between the sequences’ entropy measures and their
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mean rated randomness is only 0.54.

While it has been convincingly established that subjects show consistent
biasesin judgments of randomness, the explanations for these biases are, in our
view, not as convincing. Various accounts have been suggested by psycholo-
gists for subjects’ performance in tasks of judgment and generation of
randomness. These include descriptions of response tendencies (Tune, 1964)
and of several variables affecting perception (Wiegersma, 1987). Kahneman
and Tversky (1972) have explained these results in terms of the heuristic of
local representativeness.

According to Kahneman and Tversky's account, subjects regard a sequence
asrandom if it reflects the salient features of its parent population. Thus, when
generating a sequence to simulate successive coin-flipping outcomes, subjects
balance the frequencies of heads and tails to conform to the long-run expected
proportions. They try, however, to equate the relative frequencies of the two
outcomes not only globally, in the long sequence, but also locally, in short
subsequences. They regard chance as a self-correcting mechanism, which
promptly takes care to restore the balance whenever it is disrupted. This results
in exaggerated alternations and shorter runs than typically found in chance
productions. They describe subjects as applying the law of large numbers too
hastily, asif they believe in “the law of small numbers” (Tversky & Kahneman,
1971).

Gigerenzer (1991) has recently criticized Tversky and Kahneman's pro-
gram of “heuristics and biases” in judgment under uncertainty on several
grounds. One of Gigerenzet's claims is that often the heuristically-based
accounts of biases offer little more than a redescription of the phenomena they
purport to explain. Although local representativeness is an insightful and
tenable redescription of subjects’ performance in randomness tasks, its predic-
tive ability is rather limited. Indeed, one can infer from local representative-
ness that overalternations are expected, but the extent of that bias cannot be
predicted3 The heuristic specifies neither how local subjects’ span of consid-
eration is nor how representative that local subsequence is supposed to be.

We suggest an alternative explanation, that subjects base their judgment on
asubjective assessment of the complexity of the sequence. When asked to rate
the randomness of a sequence, they evaluate the difficulty of an attempt to
memorize, reproduce, ot concisely encode it. The harder that (implicit) task,
the more random the sequence is judged to be. Our hypothesis would be
supported if perceived randomness was better predicted by the sequence's
difficulty of encoding (i.e., subjective complexity) than by its entropy (i.e.,
objective randomness).

The variable “difficulty of encoding” which we suggest accounts for
perceived randomness, is a subjective variable. It may, however, supply an
indirect answer to the question how local and how representative a sequence
should be in order to appear maximally random. The answer is: so as to make
it hardest to encode. The hypothesis that subjective complexity may predict
apparent-randomness, if supported, would be valuable in partly explaining
subjects’ mechanism of assessing randomness.

One measure of subjective complexity might be the time it would take to
accurately copy a sequence. If our hypothesis is true (a) copying a sequence
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of P(A)=0.6 would require more time than copying a sequence of P(A)=0.5,
and (b) the apparent-randomness function would be more closely correlated
with the durations of copying the sequences than with normative measures of
randomness (such as entropy) of these sequences.

We are now conducting research in which subjects are required either to
transcribe, memorize, or dictate the sequences, and are developing various
experimental indices of difficulty of encoding to correlate with the sequences’
judged randomness. In a preliminary study, 10 subjects were presented with
the same sequences for which apparent-randomness has been plotted in Figure
2. They were instructed to inspect each sequence until they could write it from
memory. If they etred, they were given more time to memorize the sequence
until they managed to reproduce it in one attempt. Memorization time (MT) up
to the first successful performance was recorded for each sequence. The L0 MT
measurements of each subject were standardized. For each P(A), we com-
puted the mean of the standard scores over the 10 subjects. This mean is our
measute of difficulty of encoding (DE) of the sequence.

Figure 2 presents DE as a function of P(A) alongside the apparent-
randomness and the entropy functions.
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Figure 2. Apparent-randomness, difficulty of encoding, and entropy as
functions of the sequence’s probability of alternation, P(A). (AR is apparent-
randomness, linearly transformed; DE is difficulty-of-encoding, linearly
transformed; EN, second-order entropy, is a measure of objective random-
ness.)

The entropy values tange from O to 1. Apparent-randomness was rated on a
scale from 1 (not at all random) to 20 (perfectly random). Subjects’ mean
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ratings ranged from 3.0to 14.6. DE, as a mean of standard scores, ranged from
-1.049 to 1.244. AR and DE were linearly transformed to range from O to 1 to
permit comparisons among the three functions.

Figure 2 indicates that, as hypothesized, the apparent-randomness function
is closer to the function of difficulty of encoding (subjective complexity) than
to that of entropy (objective randomness). The correlation between ARand DE
is 0.89, whereas the correlation between AR and EN is 0.54. Difficulty of
encoding turned out maximal for P(A)=0.7 rather than for 0.5, and it was
greater for 0.6 than for 0.5. This supports the hypothesis that subjective
complexity mediates the judgment of randomness. It should be recalled,
however, that DE was not obtained by rating a sequence’s perceived complex-
ity. DE is a performance variable meant to quantify subjective complexity.

Predicting subjective complexity

What isit that subjects are doing when they memorize sequences that makes
some sequences more difficult than others? To address this question, we
attempted to find a simple, but objective, way of quantitatively describing the
subjective complexity of a sequence that would permit us to predict its
difficulty of encoding. We adopted a technique developed by Falk (1975) that
assigns each sequence a numerical score, called a complexity predictor (CP),
based on the number of pure runs and alternating runs in the sequence.

Kahneman and Tversky (1972) suggest that when trying to dictate a
sequence of binary symbols one will undoubtedly use shortcut expressions
such as “four Ts,” or “H-T, three times.” The number of these “chunks” may
provide one indication of difficulty of encoding. We note, however, that
forming the chunk “H-T, three times” will probably be more difficult than
“four Ts.” It will require more counting and checking.

Hence, our procedure quantifies the complexity of a sequence by summing
the number of pure runs and twice the number of alternating runs. Higher
scores indicate more complexity. The double weight given to alternating runs
indetermining the value of CP depends partly on the fact that the unit repeating
itself in such runs is twice as long as in pure runs. However, this criterion alone
will not lead to a unique score for a sequence, because there are no clear
boundaries between pure and alternating runs. For instance, the
sequence H HH T H T could be assigned scores of 4 HHHTHT) or 3
(HHHTHT) depending on how the sequence is partitioned. A unique value
does exist, however, if we agree to partition each sequence to achieve the
lowest possible score (in this case, 3). Thus, for example, the sequence
below, with P(A)=0.2,

HHHHHHTTTHHTTTTTTTHHH
was scored by listing 5 uniform runs, as depicted. The sequence's CP would
therefore be 5. In contrast, the following sequence, with P(A)=0.8,
HHTHTHTHTHTTTHHTHTHTH
was scored by listing 5 ing 5 chunks, two of which are doubly weighted because
they are runs of alternations. The CP measute of this sequence would thus
be 7. This may explain why, although these two sequences deviate equally

_8-



from the expected P(A)=0.5, the one with overalternations is empirically
rated as more random.

To test the adequacy of this method, we calculated the “complexity
predictor” (CP) for the sequences used by Falk (1975). The procedure gave
higher CP scores to sequences with exaggerated alternations (P(A)>0.5) than
to sequences with the same extent of exaggeration in uniform runs (P(A)<0.5).
Additionally, some sequences with exaggerated alternations received higher
values for CP than sequences with P(A)=0.5. The correlation coefficient
between CP and A R across the sequences was 0.90, as compared with 0.54, the
cortelation between entropy and AR.

These results suggest that sequences with overalternations are perceived as
mote tandom than their entropy warrants because of a relative difficulty in
processing successive alternations compared with uniform runs. CPisarough
index of subjective complexity; it addresses only sequential dependencies
conditioned on one preceding symbol (as does the EN measure), it depends on
somewhat arbitrary weights, and is based on one particular pattition of the
sequence, not necessarily the same partition used by subjects. Yet it is highly
correlated with apparent-randomness.

Furthermore, CP matches the subjects’ difficulty-of-encoding function
nicely. The correlation coefficient between CP and DE was 0.96. This
suggests that whatever strategies subjects employ in memorizing the se-
quences, the difficulty of the task is strongly related to the above weighted sum
of runs. The same is apparently true for the judgment of randomness.

From a mathematical point of view, a run of alternations is as redundant as
a uniform run. Both allow perfect prediction within the boundaries of the run.
The conditional probability of change following a given symbol is 1 in the
former and 0 in the latter. Psychologically, however, they appear not to be
equivalent. This may be the root of the bias in regarding sequences with too
many alternations as maximally random, and of the negative skewness of the
DE and AR functions.

Implications for teaching

The teaching of probability and statistics relies heavily on the concepts of
chance and randomness. Statistical educators should therefore be aware of the
“theories” and preconceptions concetning these concepts that students pos-
sess before receiving any instruction. The existing psychological research on
peoples’ biases and misperceptions of randomness is thus highly relevant for
educators. The similarity between the concepts of randomness and complex-
ity, and our preliminary findings of a high correlation between subjective
randomness and subjective complexity, may shed more light on the psychol-
ogy of randomness.

Whether people’s perception of randomness of sequences is determined by
their expecting locally-representative examples of the generating rule, or they
infer randomness from their expetience of complexity, they end up identifying
randomness with excessive alternations. Perhaps both processes work jointly
and converge on the same result. Students’ misperceptions of randomness
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might thus be psychologically overdetermined. Teachers should therefore
realize that there are powerful reasons behind these robust misperceptions.
They cannot be easily eradicated. As a prerequisite for change, however,
students and teachers ought to know something about how we are already
thinking of randomness. Being aware of our biases, and understanding the
mechanisms accounting for them, may be a first step toward overcoming them.

Since it appears that in judging randomness, subjects attend to the complex-
ity of sequences$ it mightbe possible to fostera more intuitive, yet mathemati-
cally sound, conception of randomness if it is introduced via the complexity
interpretation. Certainly, we do not mean to suggest that beginners be
instructed in the technicalities of information theory and coding schemes;
rather, we suggest that the relation between the theoretical concepts of
randomness and complexity be made mote explicit. To make the idea
concrete, it may be of instructional value to have students copy several
sequences with varying P(A)s. They may note that the harder it is to copy a
sequence, the more random it appears. A definition of randomness based on
objective difficulty of encoding (i.e., complexity) will thus have intuitive
appeal. Students will certainly understand it, in particular if they try to
transcribe, dictate, or memorize several such sequences. This introduction
may help students come to grips with the meaning of randomness.

Clearly, introducing randomness through the sequences’ difficulty of en-
coding will not help in remedying the gambler’s fallacy. On the contrary,
(subjective) difficulty of encoding, as a function of P(A), displays the same
shift relative to objective randomness as the function of perceived random-
ness. This, in fact, might be the reason for people’s misperceptions of
randomness.

The main advantage of introducing the complexity interpretation lies in the
insight students may gain concerning the meaning of randomness of se-
quences. The mathematical definition of randomness as statistical indepen-
dence is meaningful with respect to the process that generates the sequences.
The outputs of that process, however, defy a simple determination of their
randomness. Attempting to encode such sequences and appraising the diffi-
culty of this assignment could fill this gap. It may provide an intuitive
assessment of the extent of randomness of sequences as a first approximation.
This intuitive assessment should, howevet, be somewhat adjusted, because
difficulty of encoding (just like apparent-randomness) is subject to small
systematic biases.
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FOOTNOTES

! To simplify matters, we refer to a binary sequence, but the arguments apply
as well to a matrix or to any other spatial layout of two or more symbol types.

2 Defining complexity in terms of the length of the shortest algorithm for a
digital computer raises a problem: which computer shall be employed?
Likewise, what particular computer language should be used? Different
machines, communicating through different computer languages, might
require more or fewer bits when instructions are translated from one to the
other. Actually, however, the choice of computer and language matters very
little. The problem may be avoided by insisting that the randomness of all
sequences be tested on the same machine (Chaitin, 1975).

3 In fact, about half the subjects rated how likely such a sequence was if the
cards presenting the two symbol types had been petfectly shuffled before-
hand. The other half rated how likely it was, given the sequence, that the
cards had been well shuffled. There was no difference between the two

4 groups' responses.

A sequence’s entropy index is an estimate obtained by the use of empitical
proportions which replace the “true® population probabilities. The definition
and method of computation of the entropy measure can be found in Attneave

5 (1959, pp. 19-21).

Kareev (1992) has suggested an interesting hypothesis that ean predict
results of generation of randomness (but not of perception of randomness).
His predictions are based on the local representativeness heuristic curtailed

6 by the limitations of short-term memory.

This statement is based on powerful introspective data, and is inferred from
our pilot results despite risking application of “the law of small numbers™.
(Our continued investigations further support that contention.)
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