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previously covered notation and material. Unless there 
is special expertise needed, I tend to avoid using guest 
lecturers. 

Where should a course be located and what hotel should 
be chosen? In the United States the best two places for 
short courses in biostatistics and epidemiologic methods 
are the Washington, D.C., area and the Atlanta area be- 
cause these locations have the largest local pool of poten- 
tial course attendees from government agencies in each 
area. Other locations of the United States have been cho- 
sen when interest in a course has been expressed by a 
cluster (usually at least ten) of persons from the same lo- 
cal source. The hotel chosen should be convenient to local 
course attendees and should have adequate small confer- 
ence facilities. 

When and how often should courses be taught? Dur- 
ing the academic year, the only times available are during 
fall or spring break periods, semester breaks, and sum- 
mer time. Weekend courses allow more flexibility, except 
that in our experience most participants prefer work-week 
hours. To allow for replenishing the pool of potential par- 
ticipants, we plan the same course in the same location no 
more than once every two years. Nevertheless, because 
we have developed a sequence of three different courses, 
we frequently plan the sequence in adjacent years. Within 
the past two years the number of invited courses has in- 
creased, so that as a consequence, we are planning fewer 
private business ventures in the immediate future. 

When and how do we advertise? Course advertisements 
are usually placed about four months prior to the course 
date. We usually put a deadline for registration that is 
about two weeks prior to course date. We used to adver- 
tise in several publications, including the American Jour- 
nal of Epidemiology and Biometrics; in recent years we 
have gotten by using only the Epid Monitor, which has 
worked for us primarily because of the reputation we have 
developed from past courses. 

There are several other decision areas we will now very 
briefly mention. These include whether exercises should 
be given in class or for homework, what kind of teach- 
ing materials should be copied for students, what kind 
of AV setup should be used, and to what extent should a 
computer be used. Regarding exercises, we usually pro- 
vide short problems with answers, but spend little class 
time discussing these, primarily because of the material 
we want to cover. We strongly recommend copying trans- 
parencies for students. This allows students to listen more 
carefully to lectures. We have found that using two over- 
head projectors is extremely valuable, especially because 
it allows the instructor to put a formula on one screen and 
an example on the other, to compare two analyses of the 
same data, or to allow the student to follow material being 
covered on consecutive transparencies. We provide exam- 
ples of computer printouts and, in some cases, summary 
descriptions of programming command statements; how- 
ever, we have found it too costly and infeasible to provide 
actual computers for student use. Moreover, much of the 
mechanics of computer use detracts from comprehension 
of the concepts and methods we are covering. 

We consider it very important that a relaxed atmosphere 
be developed throughout the course; wherever possible, 
the use of humor and congeniality during lectures and 
break times is quite effective in maintaining student inter- 
est and attention. 

In Summary, through my experience over the past 20 
years, I have found short courses to be a very effective and 
efficient approach to communicate fundamental, interme- 
diate, and advanced statistical methods and concepts to 
a wide variety of audiences throughout the world. This 
experience has also been personally rewarding in terms of 
financial profit, travel to interesting locations, and devel- 
oping new friends and professional colleagues. 

[Received September 1994. Revised November 1994.] 

Confessions of a Coin Flipper and Would-Be Instructor 
Clifford KONOLD 

Simulation data are used to test a student's beliefs about 
the relative probabilities of two sequences obtained by 
flipping a fair coin. The episode is used to illustrate general 
issues in using simulations instructionally. 

KEY WORDS: Computer simulations; Intuitions; Ran- 
domness; Wait time. 

1. INTRODUCTION 

Most people spend little time flipping coins. When they 
do, it is not usually for the purpose of learning about coins 
or chance but for making a random selection. And I have 
never known anyone flipping a coin in such a circumstance 
to record how the coin landed. I have vivid memories of 
two occasions in my own life when a fairly important 
matter was decided by flipping a coin. In both cases, I 
can recall whether I won or lost but not whether the coin 
landed heads or tails. The fact that Kerrich (1961) was in 
prison when he dutifully recorded the results of 10,000 
coin flips hints at the conditions required to motivate an 
empirical approach to probabilities in coin flipping. 

It should come as no big surprise, then, that many peo- 
ple make claims about the results of coin flipping that they 
might discover to be incorrect if only they would conduct 
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Figure 1. A Sequence of Coin Flips Obtained by Repeatedly Flip- 
ping Until the Occurrence of Either HTHHT or HHHHH. 

a few (thousands of) trials and keep track of what hap- 
pened. Here is a question for which a bit of data might help 
change some minds: Suppose you were to keep flipping 
a coin until it landed either HTHHT or HHHHH on five 
consecutive flips. Which of those two sequences would 
you predict would occur first? 

To illustrate, I repeatedly flipped a coin, letting it land 
on my desk, and kept going until the string of flips ended 
with either HHHHH or HTHHT. The results are shown in 
Figure 1. 

If you are like many people I have talked to about this 
problem, you would have put your money on HTHHT, 
and in this instance, you would have won. Notice the four 
H's in the middle of the sequence. One more H there and 
you would have lost your bet. Many people, by the way, 
would be surprised to see seven T's at the beginning of the 
sequence. I must admit I was tempted to start over-to 
disregard this sequence as aberrant. Most of us think that 
sequences of coin flips should alternate frequently between 
heads and tails, more frequently, it turns out, than they 
typically do (Falk 1981). Indeed, that is one of the reasons 
people give for why they believe HTHHT is more likely in 
this situation than HHHHH. The sequence with all heads 
looks too orderly to be the result of a random process (cf. 
Kahneman and Tversky 1972; Kqnold, Pollatsek, Well, 
Lohmeier, and Lipson 1993). 

Recently, I have been trying to teach probability by hav- 
ing students put their theories about outcomes of chance 
events to the test. Knowing that students have somewhat 
less determination, if not leisure time, than Kerrich (1961), 
I have made heavy use of the computer with which stu- 
dents can quickly generate and analyze data, leaving them 
ample time to reflect on what they observe. My hope has 
been that by comparing their expectations with the results 
of simulations, students will be motivated to reconsider 
their beliefs and, when necessary, replace these with be- 
liefs in agreement with probability theory. I have been 
designing a probability simulation program called Prob 
Sim? (Konold and Miller 1994) and accompanying lab 
activities which make use of this basic philosophy. In this 
article, I describe in some detail a tutoring episode with a 
student and use it to illustrate a few issues I have come to 
regard as critical in using simulations instructionally. 

2. TUTORING STUDY 

In the spring of 1990, I was testing an early prototype 
of Prob Sim in individual tutoring sessions with under- 
graduates. One of these students, Kim Davis, worked as 
a part-time assistant in a photo lab adjacent to my office. 
When I asked if she would be a guinea pig in this tu- 
torial study, she was hesitant. I knew that the following 
semester she would be taking a required statistics course 
in her major and convinced her to participate by suggest- 
ing that time spent in this study might give her a leg up. I 
also said I would pay her $5.00 an hour. I met with her 

mHrr mmH mmH 4irHTr mrTn HMrHr 

Figure 2. A Result of Flipping Until Either HTHHT or HHHHH 
Using the Block Method. 

for about 90 minutes once a week for three weeks. During 
these sessions, which were videotaped, we modeled sev- 
eral problems using the software. Here I describe only that 
part of our interaction that involved the flip-until problem 
given above. 

2.1 Session One 

It was near the end of our first session when I introduced 
Kim to the flip-until problem. I also gave her a similar 
problem that asked which of the two sequences was most 
likely if the flips were conducted in blocks, or sets, of five. 
An example is given in Figure 2. In this example it required 
six blocks for one of the target sequences, HTHHT, to 
occur. According to this method of flipping, the specified 
sequence must occur within a block of five flips; a sequence 
occurring between blocks is ignored. Notice that if strings 
occurring between blocks counted, I would have stopped 
flipping after the initial HT of the third block. 

Below is a partial transcript of our discussion of these 
two problems, which I have cleaned up in various ways. 
Kim referred to the type of sequences generated in Figure 1 
as "in a straight line" or "string." She firmly maintained 
that with the string method HTHHT was more likely than 
HHHHH. In the case of sampling in blocks of five, she 
argued that the two sequences were equally likely. 

Kim: I think [HTHHT] will happen faster than [HH- 
HHH] in a straight line. 

Me: In a straight line. OK. And can you say why you 
expect that? 

Kim: I think just from the long line, it can break into 
that at any point. I think it will be harder to find five of the 
same in a row than it will be to find more of an alternation 
of heads and tails. 

Me: How about if I run it in groups, blocks of five? 
Kim: I think that they're just as equal then. 
Me: Because? 
Kim: Because they're definite sequences. You can't 

grab from any area. 

I set the computer up to simulate coin flipping under 
both methods. In the string method the computer mim- 
icked the basic procedure I used to generate the sequence 
in Figure 1. It kept flipping until the string terminated with 
a specified sequence, then printed out how many flips it 
took before that sequence was produced. In the example 
given in Figure 1 it took 19 flips before HTHHT occurred. 
In what I will refer to as a "trial" I instructed the com- 
puter to first flip until HTHHT occurred, and then flip 
until HHHHH occurred. The sequence that occurred in 
the fewer flips was deemed the "winner"~ of that trial. (I 
conducted the trials in this two-stage fashion simply be- 
cause the "draw until" command in Prob Sim allowed only 
one argument at a time.) 

In the block method, the computer kept flipping blocks 
of size five until it produced the requested sequence. The 
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Table 1. Number of Repetitions Required to Obtain Target 
Sequences in Eight Trials Using String and Block 

Method of Sampling 

Sampling Method 

String Block 

Trial HTHHT HHHHH HTHHT HHHHH 

1 34 104 5 24 
2 37 116 34 13 
3 22 29 20 15 
4 48 36 22 63 
5 34 50 49 63 
6 26 7 19 3 
7 21 101 78 109 
8 85 28 59 34 

program then displayed the number of blocks required 
to obtain that sequence. Again, a trial consisted of flip- 
ping first until HTHHT occurred and then flipping until 
HHHHH occurred. The winner was the sequence that 
occurred in the fewer number of blocks. 

We conducted eight trials using each sampling method. 
Table 1 shows for each target sequence the required num- 
ber of repetitions for each method. In the case of the string 
method this is the number of single flips required; for the 
block method, this is the number of blocks required. In 
the string method HTHHT occurred first in five of the tri- 
als while HHHHH occurred first in three. In the block 
method, the trials were split four/four between the two 
sequences. 

I then asked Kim to evaluate her predictions in light of 
these results. She did not focus on the number of winners 
and losers, but on the number of repetitions required to 
obtain each sequence, saying these were "pretty close" for 
the blocked trials. She suggested we compute the average 
number of repetitions in both methods. Table 2 shows the 
averages she computed. 

Kim: OK. That's exactly how I wanted it to turn out. 
Me: How confident are you that in this case [blocks], 

they're equal, and in this case [string], [HTHHT] is more 
likely? 

Kim: Very confident. I'm more confident in this [equal 
for block data] than this [not equal for string data]. 

Me: But if we had to do this [string] now one time, and 
you had to bet which one would occur, you'd want to bet 
on [HTHHT]? 

Kim: Yep. 
Me: So let's do it. Would you be willing to bet a dollar 

against my 70 cents? 

Table 2. Comparison of Average Number of Repetitions to Get 
Target Sequences Using String and Block Sampling 

Methods (n = 8) 

Sequence 

Method HTHHT HHHHH 

String 38.4 58.9 
Block 36.3 40.5 

Kim: Yep. 
Me: Are you a gambling person? 
Kim: I'll gamble on this. 

We conducted one trial, which Kim won. 

Kim: I'd keep betting like this. 
Me: You'd give me that bet all day long? 
Kim: Yeah, cause I'd lose some, but I think in the end 

I'd come out with a higher- 
Me: Want to do it again, same bet? 
Kim: Yeah. 

Kim won again. 

Me: Would you even give me better odds? Like, would 
you let me bet 50 cents against your buck? 

Kim: Yeah. 
Me: So if you were going to put down a dollar [on 

HTHHT] in this case, what is the least amount of money 
you'd let me put down [on HHHHH] before you wouldn't 
make the bet anymore? 

Kim: If we were going to take a group of five or six, 
and the best average out of that won the money, I would 
let you go down to a cent. 

I was not getting greedy here; I was trying to gauge the 
strength of her belief. Given her expectation that HTHHT 
was more likely than HHHHH, she seemed to have a good 
sense of the law of large numbers, that if we averaged 
the number of repetitions over several trials, she could be 
virtually certain that HTHHT would come out ahead. But 
I wanted to keep the experiment simple and so asked her 
what she would wager if we continued as above, betting 
on the outcome of single trials, not averages. 

Kim: I think I'd go down to like 50 cents, 40 cents. 
Well, 50 cents. 

Me: But if we take the average of eight times, like we 
did up here, you'd actually let me bet a penny. 

Kim: Yep. 

Kim was to return for two more sessions. I planned to 
continue betting on trials to see how long it would take 
her to abandon the belief that HTHHT was more likely 
than HHHHH using the string method. The combination 
of being wrong and losing money would certainly force 
her to change her prediction and provide the motivation 
for theory revision. That was precisely the process I was 
interested in investigating. 

Before describing what happened in those sessions, I 
need to make an embarrassing admission that may help to 
calm the rage some of you are experiencing by now. I was 
wrong about this problem, and Kim was right: HTHHT is 
more likely than HHHHH to occur first if run in a string, but 
equally likely if done in blocks of five. In fact, because the 
odds she gave were not far from fair odds, she spared me 
from losing big. Nevertheless, the tables had been turned, 
and I was the unwitting subject of my own research. The 
question was: How much data would we need to collect 
before I changed my mind? The answer would be: A lot. 

I am sure the results to this point had little impact on 
my belief. Anyone who has used probability simulations 
instructionally is quite used to getting "bad" results with 

The American Statistician, May 1995, Vol. 49, No. 2 205 

This content downloaded  on Mon, 4 Mar 2013 12:32:54 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


small samples. Consequently, I gave little attention to the 
difference of 20 between the two averages in the string 
method in Table 2. Indeed if, as I thought, the two were 
equally likely, a difference at least that large in either di- 
rection would occur by chance about a quarter of the time. 

2.2 Session Two 

The transcript of our second session picks up with me 
setting up the computer to continue the same gamble. I 
questioned her as I entered the information into the pro- 
gram. 

Me: I don't remember your sequence. 
Kim: Mine was HHTHT. 
Me: I'll let you play any number [sequence]. And the 

bet is, I put up 60 cents and you put up a dollar, and we do 
10 times. And we want a block size of 5. Right? 

Kim: But we didn't chunk it out. It was just [pulls 
hands apart to suggest a long line]. 

Me: Oh, sorry, it was in the line. That's right. 
Kim: I'll lose your way! 
Me: And we want to run till HHTHT. 
Kim: I actually think it was HTHHT. 
Me: You want to change it? 
Kim: Yeah, I do. 

Given my misunderstanding of the situation, it did not 
matter which sequence she bet on, or whether we con- 
ducted trials in a string or in blocks. This could explain 
my poor recall of the specific sequence she had bet on and 
of the sampling method we had used. Under her theory 
both the specific sequence and the sampling method make 
a difference. I am not sure how to maintain my innocence 
in remembering having to pay Kim 60 rather than 70 cents 
when I lost, a slip she either missed or chose to ignore. 

We ran ten trials. Overall, her sequence came up first 
six times. Had we used the original betting odds, I would 
have lost 20 cents. As it was, I was up 40 cents. 

Kim: It was close that time, but this [HTHHT] came 
out best. I still strongly believe in my theory. 

My confidence was unshaken as well. I had just grown 
richer, and the six/four split was perfectly within reason. 
Time, I thought, was on my side. We ran ten more trials, 
with the same win/loss results. 

Kim: So, once again, I only beat you by one [two], but 
I owe you 80 cents now. 

Me: Want to do it again [anxious for the redemptive fire 
of the law of large numbers]? 

Kim: [Hesitates] 
Me: Do you want to change your odds from- 
Kim: Let's do it again. I want to kick your butt once 

[anxious for the redemptive fire of the law of large num- 
bers]. 

At this point she still appeared to believe not only in her 
theory, but also that the odds she had given were to her 
advantage. We ran another ten trials, this time each of us 
winning five. 

Me: So, I win 2 dollars on that round. That's $2.80 
[total]. 

Kim: Yeah. 
Me: "Yeah" what? 
Kim: Stop. 

2.3 Session Three 

As our second session ended, Kim's confidence was on 
the ropes, and I expected in our final session to observe 
what I was most interested in, how she formulated a new 
understanding of the situation. But by the next week her 
confidence had returned-she was ready to repeat the bet. 
Unfortunately, we waited to the end of our session to con- 
tinue the betting, and the tape ran out after we had done 
only one set of ten trials. Her sequence came out on top 
seven times, netting her $1.20. Of course, I figured that 
this was just chance being uncooperative again. The last 
thing on the tape is me instructing her that the two se- 
quences are "in fact" equally likely. I apparently wanted 
to see how she would accommodate this information, and 
was doubtful that in the time remaining we could collect 
enough data to erode her now-growing confidence. In spite 
of my saying this she said she would continue the bet, and 
we ran three more sets of ten for which I have only written 
records. Her sequence won a total of 20 times to my 10. 
Now, as I forked over the $3.20 I had lost that day, it was 
my confidence on the ropes. I had been playing for quite 
a while with what I thought were fantastic odds, and yet 
had lost money. 

3. THE AFTERMATH 

After this last session I returned to my office curious 
enough to conduct an additional 100 trials. The sequence 
HTHHT came up first on 61 of the occasions. I did not 
compute it at the time, but a difference this extreme would 
occur only about 2% of the time if the two sequences were 
equally likely. 

It was while running the 100 repetitions that I remem- 
bered a problem with which Warren Page had stumped me 
a few years previously: Which would be the most likely 
result, HH or HT, if you kept flipping a coin until you got 
one or the other? I remember at first being surprised on 
discovering that HT was more likely, but it was not hard 
to see why. With HH, every time you get a T, you are back 
to square one: You need to flip 2 H's. But with HT, as 
soon as you get one H, you are "locked in": A T on the 
next flip will bring success. If instead you get an H, you 
are still only one T away from success. With this problem 
in mind I sketched the diagrams in Figure 3, which con- 
vinced me that Kim's intuition was correct. Even though 
there is no stage in the generation of HTHHT in which 
you can become locked in, it is clear that it is harder with 
that sequence than it is with HHHHH to get sent, Shoots- 
and-Ladders style, back to the beginning. 

I ran additional simulations to estimate the average num- 
ber of flips required to obtain each sequence. In 400 tri- 
als the average for HHHHH was 62.16 flips compared to 
34.6 flips for HTHHT. My requests for assistance in find- 
ing a formal solution were answered by Ruma Falk and 
Rolf Biehler. They both directed me to the work of Engel 
(1975) who developed a method of computing these av- 
erage "wait-times" from just the kind of directed graphs 
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Figure 3. Directed Graphs for Flipping HTHHTandHHHHH Using 
the String Method. 

I had constructed. Using his method the theoretical wait- 
time values can be determined to be 62 for HHHHH and 
36 for HTHHT [see also Hoffman (1978)]. I shared these 
findings with a deservedly proud undergraduate tutor of 
mine, Kim Davis. 

4. DISCUSSION 

I am still convinced that simulations offer a fruitful ap- 
proach to teaching probability, but designing effective in- 
struction around them is trickier than I had imagined. In 
the remainder of this article, I make a number of recom- 
mendations about using computer simulations in teach- 
ing probability. I use the above episode as an example 
to help stress the point that various difficulties associated 
with reasoning from simulation data are not peculiar to 
students, but are obstacles we all face in trying to link 
theories with data. 

4.1 Data Are Not Forceful 

The results of a simulation do not come knocking at 
one's door announcing, "This is the data. Open up." 
Speaking of his 10,000 coin flips and theorems regarding 
random walks later elucidated by Feller, Kerrich (1961, p. 
19) tells of being suddenly struck with the realization that 
he had "collected data that contained these startling re- 
sults twenty years ago and had never so much as glimpsed 
them." The histories of science and mathematics are filled 
with examples where committed practitioners not only 
failed to see what seemed obvious to their successors, but 
also, some would argue, "distorted" or "explained away" 
what they saw. Gilbert and Mulkay (1984) describe a 
relatively recent debate in biochemistry in which rival re- 
searchers accused one another of bad faith for ignoring 
just the data that would lead them from darkness to light. 
One does not need to hold the radical view that data are 
"theory laden" (i.e., dependent on theory for their very 
existence) to accept that forming or testing a theory on the 
basis of data is, by nature, always problematic. And this 
is the plight of data within the domain of science which 
places a premium on them; data have even less chance 
of altering beliefs outside the practice of science, where 
they are casually collected, seldom recorded, and selec- 
tively attended to. Prior to my sessions with Kim, I had 
conducted many trials similar to the ones we conducted 

together without ever noticing anything unusual. I was 
virtually certain of what I would observe, so I never both- 
ered looking carefully or even recording the results. Also, 
in spite of the fact that in the sessions with Kim I had to 
examine the length of the strings to determine the winner 
of each trial, I did not notice the large discrepancy in the 
averages of the two wait times, both because of my ex- 
pectations and also because of the variability among trials 
which hides the difference from the casual observer. 

The other extreme is having no expectations of what one 
will observe in data. This mind set also is not conducive 
to learning from data because there is no experience of 
surprise that can serve to focus attention. To maximize 
the possibility that students attend to data, I have them 
make predictions about what they expect to observe before 
collecting data, and ask them to be as explicit as possible 
about the reasons underlying their predictions. Having 
agreed with Kim to pit our theories against one another, I 
was finally in a position, as was she, to notice discrepancies 
between expectations and actual experience. Even then, 
however, the data forced neither of us to concede at any 
point during our three sessions. But having recorded and 
compared trial results to our predictions, we were poised 
to feel discomfort as we considered the possibility that we 
might be mistaken. 

4.2 Attention is a Limited Resource 

In my early attempts in designing simulation activities, 
I had students make predictions about a number of events, 
and keep track of each of these in each sample they drew. 
My intention was to maximize what they learned from each 
sample of data. But many students would either become 
overwhelmed or lose interest, and so I abandoned this 
practice and now have them focus on only one question 
at a time. In the interview with Kim the gambling may 
actually have diverted attention from the major question. 
I was most interested in having her decide whether or not 
the two sequences were equally likely, not in having her 
decide if the odds she had given were fair. Note that at the 
end of session two her sequence had outperformed mine, 
and yet she appeared ready to abandon her belief perhaps 
because she was losing money. Setting even odds may 
have eliminated this distraction. 

4.3 Rarely are Enough Data Collected 

Several years ago, Cohen (1962) analyzed 70 studies 
published in a reputable psychological journal and con- 
cluded that researchers were using sample sizes that were 
so small that they had only a 50% chance of rejecting a 
false null hypothesis. One of the anonymous reviewers 
of this article called my attention to the study of Freiman, 
Chalmers, Smith, and Kuebler (1978) who looked at clin- 
ical studies designed to determine the effectiveness of 
new medical therapies. They examined 71 studies that 
reported no therapeutic effect and found that, of these, 50 
had greater than a 10% chance of labeling as ineffective a 
therapy that, in reality, resulted in a 50% improvement. 

I have not formally surveyed probability curricula us- 
ing simulation, but my guess is that frequently there are 
not enough data collected to warrant drawing conclusions. 
Before the availability of the computer, when classroom 
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data were collected by flipping coins or drawing marbles 
from containers, this was an often unavoidable problem. 
There is a tendency in using the computer, however, to eas- 
ily underestimate the time required to adequately simulate 
a particular problem. Depending on the problem under 
investigation, the speed of the computer, and the design 
of the simulation software, computer simulations may still 
be too slow to permit drawing sufficient data in the allotted 
time. My guess is that with increases in computing speed, 
we will graduate to more complex problems, and thus still 
frequently be drawing too little data. 

In retrospect, I clearly did a poor job preparing for my 
interviews with Kim-given the time I had set aside, there 
was only a slim chance that results we collected would pro- 
vide a compelling basis for changing either of our minds. 
Assuming I was correct in my belief that there was no 
difference in the wait times for flipping HTHHT versus 
HHHHH, what was the chance of collecting sufficient data 
to "decide" the issue? In the second session with Kim we 
conducted 30 trials. The time to set up, run, and record 
these trials was about 10 minutes. We were not explicitly 
pooling data across sessions, so I must have been assum- 
ing that these 30 trials would supply adequate information 
to pose a serious challenge to Kim's theory. What results 
would have led Kim to question her belief? We never es- 
tablished decision points, but note that HTHHT won 17 
out of 30, and Kim did not seem too encouraged by this 
result. So, let us assume the following symmetric parti- 
tion of the number of times HTHHT appears first in the 
30 trials: 

18-30: support for Kim's theory 
13-17: support for my theory 
0-12: support for some other theory. 

What was the probability of each of these three parti- 
tions given my assumption of equal probability? Accord- 
ing to the binomial distribution, with p = .50, the chance 
of getting data consistent with my theory is almost 64%, 
which leaves roughly 18% chance of obtaining data con- 
sistent with Kim's theory and 18% chance of befuddling 
both of us. 

Had I thought this through before the session with Kim, 
I would have either planned on conducting many more 
trials than we did or changed the random variable we in- 
vestigated. Had we compared the average wait-times for 
the two sequences, as Kim had initially suggested, we 
could have had my mind changed in 5 or 10 minutes of 
sampling. The important point is that when designing 
classroom simulations, you need to consider carefully the 
sample size (and thus time) required to permit arriving at a 
reasonable conclusion. And whatever you determine this 
sample size to be, triple it. 

4.4 Variability is Typically Ignored 

Simulations are frequently used, as they were here, to 
determine the relative probabilities of two or more mu- 
tually exclusive events. For example, suppose you had 
students pre.dict which of the two sequences HTHHT ver- 
sus HHHHH is more likely in five flips of a coin (i.e., 
using the block method). Many will predict that HTHHT 
is the more likely. It seems reasonable that they could 

Table 3. Frequency of Occurrence of HHHHH Versus HTHHT in 
Ten Repetitions of 1,000 Trials in Which the Coin Was Flipped Five 

Times in Each Trial 

Rep. No. 

Sequence 1 2 3 4 5 6 7 8 9 10 

HHHHH 33 28 24 34 34 28 26 36 28 29 
HTHHT 20 36 26 26 24 37 35 36 32 29 

learn otherwise from conducting simulations. Imagine 
that a student runs 10,000 repetitions of this experiment 
in which there were 312 occurrences of HHHHH and 320 
of HTHHT. What is this student to conclude from this? 
These frequencies are probably closer than the student 
would have predicted before collecting data. But those 
who believe that HTHHT is more likely might argue that 
these data support that belief. This is not a case of drawing 
a sample that is too small, but of the students not having 
available a basis for evaluating the magnitude of an ob- 
served difference. This problem is sometimes finessed by 
having students compare relative frequencies, in this case 
.0312 versus .0320. Students may be more likely to agree 
that the latter values are nearly equal, but they are still 
evaluating differences without regard to the variability in 
the sampled values. 

Although I do not introduce formal measures of vari- 
ability in introductory courses, I do have students conduct 
multiple repetitions of a trial of some sample size. The 
different outcomes of each repetition reveal the variability 
inherent in the sampling process and give some sense of 
the magnitude of that variability for the given sample size. 
In the example here, instead of having students conduct 
10,000 trials in one step, I would have them draw 10 rep- 
etitions of samples of size 1,000. If these are recorded, as 
in Table 3, many students will pay little attention to the 
variability. 

The variability over repetitions is more salient when the 
results are plotted, as in the histograms in Figure 4. 

Having students compare (or pool) their results with 
those from others in the class calls further attention to 
the variability in results. If instead of frequencies they 
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Figure 4. Histogram Display of Results Shown in Table 3. 
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plot relative frequencies, students can compare variability 
for repetitions with different sample sizes and develop a 
general sense of the law of large numbers. 

4.5 The Focus Should be Sense Making 

To discover through simulations using the string method 
that HTHHT was more likely than HHHHH to appear first 
was not the end, but the beginning, of my inquiry. Had 
we found them instead to be roughly equal, I doubt Kim 
would have blithely accepted that. She would have puz- 
zled over why that was, and I would have encouraged 
her to pursue the question until it made sense to her. In 
short, simulations should not be used to replace the tradi- 
tional theory-driven approach to teaching probability with 
a purely empirical approach. Some students are only too 
happy to draw sweeping conclusions from their simula- 
tions. I was stunned to read one student's summary of 
what he had learned that week in a class I was teaching: 
"I used to think that with coin flipping heads and tails 
were equally likely. But through using the computer I've 
learned that a tails is more likely." 

Simulations give us a way of testing our theories, and 
these theories should remain the primary focus. I stress 
the word "our" because it is fairly common to use simu- 
lations to validate theoretical probabilities or probability 
postulates. My own belief is that this approach has a 
good chance of leaving untouched the informal notions 
students bring into the classroom. The approach I have 
taken is to encourage students to articulate their informal 
theories, to make predictions from them, rind to use the 
results of simulation to motivate the need for alternative 
explanations (Konold 1994). As a result, I devote cons'id- 
erable classroom time to discussing students' expectations 
and theories before having them collect data. After they 
have collected data and reconsidered their theories, I have 
them as a class discuss their findings. I make sure that 
an acceptable theoretical explanation is one of the options 
under consideration in this final discussion. The ratio of 
classroom time spent at the computer to that spent in dis- 
cussion has changed from about 2 to 1 in my early attempts 
at using simulation to 1 to 2 now. It is during these class- 
room discussions, and not usually at the computer, where 
understanding finally develops. 

Let me quickly add that what I regard as understanding 
is not synonymous with having a formal solution to some 
problem. I do not mean to minimize the importance of 
formalization. I was not satisfied that I had solved the 
flip-until problem until I learned from Engel (1975) how 
the recursive structure of the directed graphs in Figure 
3 could be mastered and obtained theoretical validation 
of the simulation results. However, understanding how 
to apply the formula is not what enlightened me; it was 
thinking about the directed graphs themselves. Examining 
these, I could see why a string of random outcomes was 
more likely to be closer to the final state HTHHT than to 
the final state HHHHH. 

Similarly, I cannot remember how I came to understand 
that all coin-flipping sequences of equal length are equally 
likely, but I am confident it was not by thinking about the 

implications of (1/2)'. More likely, the understanding de- 
veloped over time as a result of looking at tree graphs, of 
thinking about the implications of believing that the prob- 
ability of each outcome on each flip remained 1/2, and 
of noticing that my expectation that a mixed-up sequence 
was more likely than a patterned one was correct if I con- 
sidered unordered strings (e.g., three H's, two T's) rather 
than ordered sequences (e.g., HTHHT). Of course, this is 
precisely the understanding that I overgeneralized when 
considering the string version of the problem. But it is 
this kind of understanding that permits us to generalize at 
all with some degree of success. 

Moreover, understanding does not typically arrive sud- 
denly like a newborn and set up permanent residence. 
More like a teenager, it pops in and out. After I thought I 
had come to terms with the flip-until problem, the follow- 
ing dilemma set me back momentarily. Suppose I flipped 
a coin 1,000 times and wrote down the results in one long 
string. I could search for occurrences of HHHHH and 
HTHHT by sliding a "window" along the string that al- 
lowed me to see only five characters at a time. If I started 
at the beginning of the string and advanced the window 
one character at a time, I could view 996 events of length 5. 
I am convinced that in this sample the expected number of 
occurrences of HHHHH, HTHHT, or any other sequence 
of length 5 is 996 (1/2)5. How can this be reconciled with 
the fact that, sliding the window along, I expect to en- 
counter the first instance of HTHHT before encountering 
HHHHH? 

[Received June 1993. Revised November 1994.] 
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