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[Note: During the talk on which this paper is based, there were many questions, comments,

and observations by the Workshop participants.  These have been paraphrased, and appear in

italics to distinguish them from the speaker’s replies.]

It has been requested that we make these presentations as interactive as possible.  That is

fine by me and is much more my style, so please feel free to interrupt me with any questions

you may have.

By way of being interactive, I would like to start with a quiz:
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Fig. 1.  “What do you see in this picture?”

What does this figure mean?  Just this: from far away you can make out the important

words: wisdom in the first instance, and knowledge in the second.  If you are too close you can’t

perceive the big picture but rather focus on the small, individual letters used to form the big

message.  The small letters are used to spell knowledge in the first case, and information in

the second.  This is parallel to the forest-and-trees analogy.

My apologies to Douglas Hofstadter, who is the author of a book entitled Gödel, Escher,

Bach [1] where I got the idea for this figure.  Perhaps some of you have read it.  I believe that

it is a valuable book to read and recommend that you try it.
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What I have tried to do in this figure is present a representation of what I consider to be

the fundamental problem at the moment with mathematics and science education.  It is

perhaps best explained by a quote from T. S. Eliot’s Choruses from the Rock:

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in

information?

The point here is that we in science and maths education have allowed ourselves to

become information dispensers.  We should resist that trend and restore the goal of imparting

wisdom.

This talk is divided into four broad areas.  These are:

(1) General remarks about cognitive science

(2) Hard evidence from cognitive research

(3) Some descriptive cognitive models

(4) Contributions from cognitive science to maths and science education.

General remarks about cognitive science
I should, perhaps, point out at the outset that the views expressed in this talk are my

own; I make no claim that they are authoritative or even represent the consensus view of

cognitive researchers.

I will begin my general remarks by addressing the motivation for doing cognitive science.

As far as I am concerned, a major motivation is what I alluded to in the introductory remarks.

This might be defined as information pollution.  As in other endeavors, it is time for us in

science and maths education to take a more “ecological” perspective.  We are being inundated

with a lot of facts, and the prevailing view is that students ought to know these facts.  I think

that is the wrong way to go about it.  What you want to do is treat your students as thinkers.

Teach them to teach themselves.  Make them learners, and then you don’t have to worry about

teaching them all the facts; they’ll do that themselves.

What is the aim of cognitive science?  It is to achieve an understanding of the processes

underlying knowledge acquisition and utilization.  We devise models to help explain the

processes of learning and problem solving.  For us in the field of pedagogy, research on
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cognitive processes offers the potential for developing educational practices that are more

efficient and/or applicable to a wider audience.

Who are the practitioners or contributors to cognitive research?  This is very important

because, in my opinion, you, as educators, should be playing a significant role.  There is a

group of people who call themselves cognitive scientists, but those people are generally in

psychology departments and tend to be concerned about things like eye movements and

neurons in the brain.  Cognitive science is a very broad-based spectrum, ranging all the way

from that kind of psychology right on up to pedagogy.  You (as educators) cannot afford to wait

for some specialist or some expert to come along and tell you how you should teach or what

you should teach.  You should be engaged in discovering those answers yourselves.  You are as

competent as anybody to make those discoveries, and people are making them all the time.

One thing that is clear to me is that cognitive science is not going to bear much fruit until

content people and educators get very strongly involved in the research process.

What is the nature of cognitive science?  At present, it is very qualitative.  All we have are

general, qualitative descriptions of certain kinds of processes.  Precise or quantitative models

are not yet possible.  Artificial Intelligence (AI) would like to have such quantitative and

procedural models of learning because these models could then be used to make a computer

learn.  AI is a major driving force towards that direction of research.  For the near future,

cognitive models will remain descriptive.

What is the methodology of cognitive science?  In the previous talk, David Treagust

described various types of research studies and their associated methodologies.  That is not

what I’m talking about.  The methodology I am referring to here is of a more broad or

fundamental nature and this I would characterize as a modified scientific paradigm.  What is

the scientific paradigm?  Just simply: observe, form models, and then perform experiments to

verify the models.  This is what all scientists do.  A modified paradigm is needed for cognitive

science because there is a large question here about what constitutes observation; in

particular, we have to extend observation to include reflection: observation of ourselves;

reflections on our own learning processes.

In this vein, I would like to comment on something that worries me about cognitive

science in general, and that is whether or not the mental structures and processes that we

have for the performance of our activities as scientists are adequate for the task of evaluating

our activities.  A visual representation of what this means is shown below.
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(Physicist)

(Cognitive Scientist)

(Physicist)

(Cognitive Scientist)

(Physicist)

(--- ---)

(---)

Fig. 2.  A physicist thinking about himself as a cognitive scientist

thinking about himself as a physicist …

Any physicists in the audience will recognize this as a self-energy diagram.  The diagram

would apply equally well to any science or mathematics educator.  You ponder yourself or you

ponder the thoughts and activities of a cognitive scientist (which you should also be), and you

should be thinking about how you think.  And how you think you think.  And how you think

you think you think.  Etc.
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A few examples might make these points about thinking about thinking and the

insufficiency of our cognitive processes more clear.  When I teach physics, I try to make

students aware of the fact that they already have a lot of information but do not have the

wherewithal to extract the information from their experience.  This information is, therefore,

not available to them and they cannot use it.  I think a similar situation occurs with teachers

like yourselves.  You have a lot of information—an awful lot of experience dealing with your

interactions with students.  If you could extract this information, and communicate it to the rest

of us, we all would benefit.

Extracting information from your memory store presumes the ability to interact willfully

with your recall processes.  Think of some piece of information that you haven’t used in an

long time; maybe it was a phone number when you were in college or the name of somebody

you met ages ago.  Why haven’t you forgotten that?  Can you forget it?  Clearly there are

aspects of information acquisition, storage, and deletion that are not voluntary at all.  You

cannot willfully make yourself forget something and thereby free up that memory space for

something else.  Fortunately the human brain never seems to be full, so I don’t think you

should worry about that limitation.

What does it mean to know something?  How do you know that you know it?  I invite you

to consider certain distinctions that we all make.  Sometimes you know that you know

something.  Sometimes you know that you knew something, but you don’t know it any longer.

Sometimes, you sit there and say to yourself,  “I think I know that, but I don’t know where it

is.”  Such pondering brings to mind a paraphrase of the famous Descartes quote: “Cognito ergo

sum”  (“I think, therefore I am.”)  that I once saw scrawled on a bathroom wall at MIT.  It was:

“I think I think, therefore I am… I think.”

Do you distinguish between knowing and understanding?

Yes; but there is a deep inter-relationship between the two.  Understanding means that you

can use the knowledge as opposed to merely have it.  And that requires, from my point of

view, that the knowledge be integrated into some kind of a mental structure.

So it’s possible to know without understanding?

Oh yes; I know lots of things I don’t understand.

Does that refer to something like an address or something that you recall?

Understanding implies to me that the information is useful.  What does it mean to use a certain

kind of information?  An address might be useful for locating some other place.  If you don’t

know the address, you can’t use it.  You may know it and still not be able to use it if you can’t



6 Gerace

place it in a context; if you don’t know where it is in a city, you can’t orient yourself by that

location.

My final general remarks about cognitive science concern constructivism.  First of all, I

believe that constructivism is fundamental to cognitive science.  Why?  Well, to me,

constructivism plays the same role for cognitive science that causality plays for physics.  It’s a

fundamental viewpoint; it doesn’t answer any question for you.  All it does is affect how you

ask the questions and the kinds of answers you’ll accept, but it doesn’t itself provide any

answers.  From a philosophical point of view, I think that constructivism is almost self-evident.

Further, there is no disharmony between constructivism and a rational or scientific

perspective.

I would caution you, however, that the term constructivism, as used in the literature, has

a broad spectrum of meanings.  The first task you must do is decide which one of those

meanings the author intends.  The term constructivism may be used: (1) to indicate a

philosophy; (2) to indicate a theory of epistemology; (3) to indicate a theory of communication;

or (4) to imply a pedagogic approach.  Unfortunately, the mapping from constructivism to a

pedagogic approach is non-unique.  As a matter of fact, you’ll find violent disagreements

among people about what constitutes a constructivist approach to education.

The implications of constructivism for communication and pedagogy will be considered in

the last section of this talk.  As a philosophy, constructivism places severe limits upon our

ability to know anything about, or even to determine the existence of, an external reality.

These restrictions derive from the premises of constructivism as an epistemology and it is those

premises that concern us here.  They are:

• Knowledge is constructed, not transmitted.

• Prior knowledge impacts the learning process.

• The construction of knowledge requires purposeful and effortful activity.

• Initial understanding is local, not global.

These assertions will be explored in more detail later after we have discussed some

cognitive models.  Such models provide a context in which it is easier to understand the

operational aspects of the premises.  The only point I want to make here is that the

constructivist point of view is clearly divergent from earlier views of education that presumed

we could put information into a student’s head.  From a constructivist perspective, real

learning can occur only when the learner is actively engaged in operating on, or mentally

processing, the incoming stimuli.  Furthermore, the interpretation of those stimuli depends
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upon previously constructed learning.  Such processing may or may not be conscious.

Depending upon the degree of self-consciousness, meta-cognitive issues may be present.

The fundamental moral for pedagogy is simply this: when you send a message to a

student (by saying something or providing information), if you have no knowledge of the

receiver, then you have no idea as to what message is received, and you cannot interpret the

student’s response.  You do not know what the student is doing with that information or what

learning, if any, occurs.

Could you explain the difference between Knowledge and Information?

Not really.  It’s a very fuzzy issue.  We often use the terms interchangeably.  I don’t think that

there is much value to be gained by trying to draw a rigid distinction between the two.  We

should keep in mind, though, that there are different levels or categories; a piece of

information, such as an address, is not the same kind of knowledge as a physics or

mathematics concept.

Couldn’t you distinguish them by distinguishing between knowledge of specifics and

knowledge of principles?

A perfectly good partition.  Any partition that makes sense is fine.

Wouldn’t it be more appropriate to side-step the matter since all of our understanding of words

is contextually based?  Since we all must construct our own knowledge of what is meant by

Knowledge, it is unlikely that we will all agree to specific definitions or discriminations.

You certainly may.

Would you define what you mean by local vs. global understanding before you move on?

Certainly.  As a student forms a concept, even when they can repeat that concept back to you

and appear to understand, their understanding is in a very limited context.  Outside that

context it is as though you never taught them at all; they don’t have the concept, or they

appear to lose the concept.  Consider this example: you teach students to identify the power of

a variable, such as x2 or x3, as the little number to the upper right of the x.  The expression

sin2x constitutes a sufficiently different context that they, in some sense, have “lost” the

concept.

Instead of worrying about categories of Knowledge and Information, why not just define the

kind of learning in which you are interested?  Perhaps we should not concern ourselves with

how an address is learned, but only with what it means to understand physics or mathematics.

In this way one can avoid introducing constructivism or epistemology.  You can simply say,

“Here is an approach which is suitable for a specific kind of learning.”
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I think it is certainly possible to take such a minimalist or pedagogically pragmatic approach,

but cognitive science seeks a more general description of the learning process.

Hard evidence from cognitive research
The amount of hard evidence gleaned to date from cognitive research studies on high-

level science and mathematics learning is underwhelming.  One should keep in mind,

however, that the research is very difficult and that the field is in its infancy.  Such studies

have tended to concentrate upon the presence and consequences of misconceptions and

novice–expert differences.

The topic of mis- or pre-conceptions has proven to be a very fertile area of research.  Here

one is usually interested in an erroneous world-view or conceptual framework that is based

upon experiences and is formed prior to any formal instruction.  From a constructivist point of

view we should not be surprised that, given the proclivity of the human mind to seek patterns,

individuals will naturally form a conceptual framework in an effort to account for, and cope

with, their experiences.  Important preconceptions have been found in many knowledge

domains.  Among these are physics, mathematics, biology, astronomy, and others [2].

Prior conceptual frameworks have been shown, in some instances, to impede learning of

a more correct or formal framework.  I am unaware of any specific study that suggests the

cause of this, but I do not think the result surprising.  Again, it is a tenet of constructivism that

the existing conceptual framework will serve as a filter of subsequent experience.  For

example, presented with a physics demonstration of some principle, individuals are more

likely to focus their attention on those aspects or features of the phenomenon that are in

accord with their current framework.  As a result, accumulating sufficient evidence to disabuse

an individual of their previous framework can be quite difficult.

Student misconceptions have been shown to be very difficult to uproot.  They are retained

even after a concerted effort has been made to dislodge them.  This is quite natural and we

should not be dismayed by it.  It should be remembered that, even apart from the student’s

emotional attachment to their own viewpoint, they are being asked to abandon ideas that have

served a very important cognitive function for them.  Most individuals, including ourselves,

would rather retain a half-baked generalization together with a list of exceptions to the rule

rather than rethink the entire morass.  Only after this list of exceptions grows unmanageable

or the existing generalization has been demonstrated to be inadequate for some important

situation will anyone be induced to seek a better generalization.  Herein lies, I believe, the key

to attacking student misconceptions.  The more we know about their individual conceptual
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framework, the better able we are to manifest its flaws and, thereby, induce the student to

reformulate their world-view.

Except for the fact that prior experience plays a significant, or perhaps dominant, role in

their formation, very little is known about the detailed origins of misconceptions.  Not being

well informed in this area, I do not have much to say.  I do find some of the results quite

intriguing.  It has been suggested that prior experience and the resulting conceptual

framework seem to hinder cognitive development in mathematics less than in science [3].

These findings could conceivably be due to the pervasiveness of mathematics, at least in our

western culture.  Such a pervasiveness would afford lots of opportunities for discovering

inadequacies in self-formed conceptual frameworks.  Finally, even if substantiated, such

findings could well be culture dependent.

The other area of concentration of cognitive research into higher-order learning is that of

novice–expert differences [4].  These studies have revealed a variety of findings regarding the

way that experts differ from novices in the nature, structure, and utilization of their

knowledge store.  Many of these conclusions are indirect, being deduced from behavior

patterns while problem solving.

Memory-recall studies have shown that the superior recall capability of experts is

intimately related to the employment of high-order knowledge structures.  Such recall studies

have been made in the fields of chess, electronic circuitry, and computer programming.  The

methodology used in all of these studies is essentially the same, so only the electronic-circuitry

study will be discussed.  Both experts and novices at electronics are presented with a circuit

diagram and, after only a brief time interval during which to study the diagram, they are asked

to recall as much of the diagram as they can.  The result is that experts have a significantly

superior ability to recall the circuit when the circuit represents a realistic situation, but their

advantage is diminished, or even disappears, when the circuit is comprised of randomly

arranged electronic elements.  This phenomenon has been labeled chunking and is believed to

be due to the expert’s ability to perceive relationships between the individual elements and

recognize the function served by clusters of elements.  Viewing the circuit diagram, the expert

chunks the information—that is, subsumes clusters of individual elements into a single

complex entity—thereby greatly facilitating recall.  Obviously, this ability vanishes when the

logical substructure is absent as it is in the diagrams consisting of randomly arranged

elements.  The interpretation is that experts have a richly interconnected knowledge store and

these interconnections serve an important function for the acquisition of further knowledge.  It

also follows that establishing these interconnections should be a priority for the developing

novice.
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It would seem plausible to me that experts would remember more, even for the random circuits,

just because they are experts.

That doesn’t seem to be the case.  Once your short-term memory is filled, it is filled and that is

all there is to it.

How strong is the transfer of these processes?  In other words, how transferable is that process

to other things that the electronics expert might be asked to remember?

In response to that I have two remarks.  The first is that I am unaware of any evidence that

would indicate that expertise transfers across domains.  Since the implication here is that the

expert is analyzing the circuit at a higher level than the detailed level available to the novice

and that they’re seeing content or relationships that the novice does not see, it seems unlikely

that an economics expert, for example, would be able to perceive those, or any other,

relationships between elements and is, therefore, for all intents and purposes, equivalent to a

novice.  My second comment is this.  Although expertise in one domain does not directly

transfer to another insofar as knowledge structures or problem solving is concerned, I think

that an expert may well have a learning advantage in a new domain because of the expert’s

proclivity to seek relationships.  This opinion is based upon observed behavior patterns of

good students, which is a topic that will be considered later in this talk.

In the domain of physics, another interesting difference between the expert’s and novice’s

knowledge store is revealed by “categorization” type judgment tasks.  These studies show that,

in addition to being richly interconnected, the expert’s knowledge store is arranged or, more

precisely, activated in a hierarchical manner [4].  This is one of the areas in which our group

(at UMass) has been working.  I must confess to being uninformed about any similar

investigations in other domains.

These categorization tasks consist of asking experts and novices to make judgments or

decisions about some set of problems.  In the original study, subjects were given a set of

problems and told to sort, or classify, the problems according to the similarity of their

solutions.  The problems were of an elementary nature, such as typically found in an

introductory course, and the subjects did not solve the problems.  The objective was to

determine what the subjects perceived to be important about the problems prior to finding

solutions.

Results indicate that novices tend to classify problems by the superficial aspects of the

problem.  For example, they might place all problems involving an inclined plane together

and all the problems involving a pendulum together, etc.  Experts, on the other hand, tend to

sort the problems by the physics principles that could be employed to solve the problem.  The
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tendency of the novice to focus on the “surface features” of the problem, as opposed to the

“deep structure” perceived by experts, has been interpreted as evidence that the expert’s

knowledge store has an organizational structure that is lacking in the novice’s.

A more detailed picture has emerged from observations of novices and experts engaged in

the problem-solving process.  Presented with a problem, experts generally first perform a

qualitative analysis of the problem employing principles and concepts.  Only after completing

this stage does the expert employ relevant operational knowledge—the procedures,

relationships, and equations appropriate to the problem situation.  The algebraic

manipulations necessary to generate a quantitative solution occur at the very final stage of

problem solving.  For purposes of problem solving, then, it appears that the expert’s

knowledge has an essentially hierarchical structure, with conceptual knowledge having

precedence over operational knowledge.  An example of a hierarchical structure for the

domain of classical mechanics is shown below in Figure 3 [5].
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Fig. 3.  An expert’s knowledge structure for classical mechanics [5]

In contrast to this, novices perform what is called a means–ends analysis.  They focus

primarily upon equations and immediately attempt to manipulate them to isolate the desired

quantity, often inserting numerical values from the very beginning of the process.  Novices do

not perceive the strategic value of conceptual analysis, and are apparently distracted by the

immediate objective of obtaining an answer.
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One of the research projects currently being worked on by our group is an effort to

determine the types of activities that are useful for inducing novices to structure their

knowledge in a more expert-like fashion [6].  In the original study, a sample of novices were

constrained by a computer-based program to perform an expert-like conceptual analysis of

problems prior to solving them.  The results showed that a student’s initial approach to

problems could be influenced relatively quickly.  After only a rather brief exposure to this

device, which incidentally was completely devoid of any instructional feedback, students

displayed significant shifts in their tendency to categorize problems by principle rather than

by surface feature.

At present we are engaged in a study to determine the pedagogic value of requiring

students to provide a qualitative analysis before solving a problem.  The requirement is

imposed by grading this analysis in exams and in homework.  The study involves a large-

enrollment introductory mechanics course.  Results are not yet final but look promising, at

least to the extent of promoting the importance of the fundamental principles.

There are two other research results that I think are very important [3,7].  These are

based upon studies of student learning and, while direct comparisons to experts are not made,

the findings relate strongly to the expert–novice work.  The first result is that good or

successful students, who might be regarded as semi-expert, are always seeking patterns and,

in general, tend to notice, expand, and refine implicit knowledge [3].  These students are more

likely to perceive commonalities of approach to problems or the importance of certain

concepts, even when these are not made explicit.

The other finding from student-learning research is that traditional problem-solving

activities impose a severe cognitive load upon students [7].  By traditional activities I mean

problems that ask students to obtain answers.  This emphasis upon the goal of answers

predisposes students to adopt a means–ends problem-solving approach, which is often an

efficacious way to proceed.  The point here is not that a means–ends approach is bad.  Experts

frequently will resort to such an approach in the absence of some other schema they can

apply to the problem situation.  The point is that many students can be so intent upon the

short-term goal of achieving an answer that they have few cognitive resources to devote to

long-term objectives, such as noticing patterns or implicit knowledge.  Assorted pedagogical

morals can be gleaned from all of these research results and these will be addressed in the

last portion of this talk.



Contributions from Cognitive Research to Mathematics and Science Education 13

If knowledge is not transferable, which is one of the premises of constructivism, what is the

point of knowing how an expert stores knowledge or solves problems, since you cannot transfer

that knowledge to the novice?

You use your knowledge of how an expert thinks to govern your interaction with the student

to assist them in constructing a similar structure.  As a matter of fact, one of the fundamental

points here is that constructivism and cognitive science very much impact one’s view of what

education means.  It is no longer a matter of sending out messages and dispensing information.

Teaching is a very interactive process, and requires a lot of bi-directional communication.  In

his talk, David Treagust gave an excellent example of this need by showing us that many

students were able to answer a particular chemistry question correctly without being able to

give the correct reason.  Simply giving problems and getting answers back is insufficient, even,

or perhaps especially, when the answer is correct.  If you are to determine what learning

actually took place, you need to know why they chose that answer.

Although my comments so far hardly exhaust the topic of novice–expert research, we

must move on.  Some of the important differences between the knowledge store and the

problem-solving behavior of experts and novices have been summarized in Table 1, shown

below.  The meaning of some of the entries will become clearer as we progress.

Table 1.  A summary of expert–novice differences

Experts Novices
Knowledge
Characteristics

Large store of domain-specific
knowledge

Sparse knowledge set

Knowledge richly interconnected
and hierarchically structured

Disconnected and amorphous
structure

Integrated multiple
representations

Poorly formed and unrelated
representations

Problem-Solving
Behavior

Conceptual knowledge impacts
problem solving

Problem solving largely
independent of concepts

Performs qualitative analysis Manipulates equations

Uses forward-looking concept-
based strategies

Uses backward-looking means–
ends techniques
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Some descriptive cognitive models
The cognitive models that will be discussed are macroscopic models.  They are called

descriptive because they attempt to provide a qualitative description of either categories of

knowledge or some cognitive process.  Quantitative models, if ever possible, are not likely in

the near future.  Fully microscopic models, which explain thinking in terms of neuron

activation, may never be possible.  In any case we should not be deterred or discouraged.

There are many examples of situations where great progress has been made despite the

absence of complete understanding of the underlying processes.  Medicine, for example, has

made tremendous progress while a full understanding of cell biology has yet to be achieved.

It is important to remember that, by their very nature, these descriptive models are

imperfect.  Do not expect them to be free of fault or above criticism.  When evaluating such

models we must keep in mind their function—the purpose for which they were created.  Some

models are useful because they provide guidance when designing instructional materials or

practices.  Other models attempt to explain a complex process in terms of simpler stages.  In

general, all models are an attempt to increase our understanding of something complicated by

decomposing it into elements that are more primitive or fundamental.

One attempt to describe the expert’s facility at problem solving decomposes the expert’s

knowledge and experience relevant for the task of problem solving into four areas [3].  These

are: (1) domain knowledge; (2) repertoire of problem-solving skills; (3) meta-cognitive

processes; and (4) meta-level knowledge.

The expert is able to draw upon extensive domain-specific knowledge that is stored and

accessed as schema [7].  The storage of knowledge as schema means that stored along with the

knowledge is a body of ancillary facts and experience that permits the expert to recognize

situations for which the knowledge is useful.  Also stored as part of a schema is a set of rules

or procedures for applying the knowledge in a useful way.  These associated factors are likely

to play a significant role in the process of structuring knowledge hierarchically.

Contained within the repertoire of problem-solving skills are a set of strategies or

procedures that the expert might apply to a specific problem situation.  Occupying a

prominent position in this list would be the rule to activate a schema that has been recognized

to have been effective in the past.  Other rules might be: transform the problem to an

analogous one and see if that is recognized; translate the problem into a different

representation; or (when all else fails) use means–ends analysis.

Other factors that are very important for successful problem solving but are difficult to

describe are relegated to the area of meta-cognitive processes.  Notable among these factors
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are motivation and self-confidence, both of which have a task-related as well as a task-

independent component.  Also included here are a variety of self-monitoring processes that

are used to allocate cognitive resources or evaluate the quality of cognitive functioning.

The last category, that of meta-level knowledge, is often neglected but plays a crucial role

in the problem-solving process.  One’s belief and value systems, which govern all of behavior,

are to be found in this area.  Also residing in this region is one’s world-view—one’s perception

of the natural order of things—which can have a profound influence on judgment and

behavior.

Needless to say, the expert usually has the edge over the novice in all four areas (domain

knowledge, problem-solving skills, meta-cognitive processes, and meta-level knowledge), and

certainly has a commanding lead in the first two areas.  When helping novices develop,

although we tend to concentrate our efforts in the first two areas, we are not unmindful of the

impact of these latter areas.  Few would disagree with the assertions that motivation, self-

confidence, and reward structure are intricately interwoven or that a student’s perception of

their ability to solve a problem greatly influences their success rate.  Consciously or not, we

consider these factors all the time.  Why, after all, do we arrange exams or tests so that easy

problems occur first, and difficult problems appear near the end?  We try to build the

student’s confidence by giving them some early successes because we know that, if they are

discouraged by an inability to do early problems, the exam is apt to be an unreliable measure

of the student’s ability.

When we counsel students to persevere, we are attempting to interact with their world-

view.  But what is their world-view?  Students tend to believe that problems are solved

quickly, or not at all.  If, after looking at a problem, they do not see how to solve it in the first

two or three minutes, they conclude that the problem is beyond their abilities and give up.

Also implicit in their world-view is their presumption that the solution to any problem must

use the most recently taught knowledge or technique.  Often we inadvertently strengthen this

perception by failing to give comprehensive tests which force the student to integrate their

knowledge.  Last, but not least, we should be sensitive to interactions between the student’s

and our own world-views.  My previous point provides a perfect example.  If we do give a

comprehensive test, or an “old” problem, and students do manifest their penchant to apply

recent procedures, we are tempted to conclude either that the student lacks intelligence or

that they have failed to learn the previous material and therefore we must re-teach it.

You have stated that one of the features of an expert is that they organize and seek patterns.

You have also humorously characterized aspects of the student’s world-view, such as trying to
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do problems with the most recently taught procedure.  Isn’t the student also organizing all the

time and this is just the result of their seeing a pattern in the way that we teach them?

That is very possibly the case.  If we changed our teaching methods, that component of the

student’s world-view might change.  On the other hand, the situation might not be so simple.

This tendency might be the result of the difficulty involved in making a judgment.  It is easier

to just continue doing what they have been doing.

Another cognitive model tries to describe the attainment of expertise as a sequence of five

developmental stages [8].  Although the divisions between the stages are arbitrary and

difficult to delineate, the decomposition is useful for emphasizing several points.  The first

stage is Novice, and is characterized by someone who is rule dominated.  The Novice is aware

of some of the rules and their entire perspective is based on rules.  Confronted by a situation,

they search known rules for an applicable one and, failing that, seek some other, unknown

rule for handling the situation.  How often have we heard a student say, “I don’t know the

formula for that case.”?

The second stage is that of Advanced Novice.  The Advanced Novice has amassed a large

set of rules and is experienced at their application.  The next stage is labeled Competency.  In

this stage students remain predominantly rule oriented but the weaning process has begun.  A

modicum of judgment has crept in but any genuine perspective continues to be absent.

Success at this stage fosters self-confidence.

An extremely important stage is the fourth, which is called Proficiency.  By this time the

student has developed a significant capacity for judgment, and problem-solving behavior is

governed by this judgment rather than the application of rules.  What makes this stage so

important is the onset of self-motivation.  Prior to this stage the student is not successful

enough to derive much reward from their activities.  To derive an internal reward requires an

emotional investment.  If the risk of frustration or failure is too high, one will not make that

investment.  To be sure, in the global realm of life, no one, including any one of us, is fully

internally motivated; we all retain some external motivators.  The issue here, however, is a

very limited one.  What does it take to become an invested or self-motivated learner?  The

answer is simple: it requires a reasonable expectation of success.  I will return to this point

later.

The final stage is that of Expert.  The characteristics of the Expert are mature judgment

(although perhaps only in their field of expertise), self-motivation, and the ability to self-

evaluate.  In this model the meta-cognitive aspects of the expert are emphasized, while the

knowledge and skill components are assumed.



Contributions from Cognitive Research to Mathematics and Science Education 17

Doesn’t this model have more to do with motivation than cognition?

Not necessarily.  I fear that I may have given that impression by using the model as an excuse

for stressing motivational or psychological factors.  Personally, I don’t think we can divorce

learning from psychology, at least in the later stages of development.  I think that we often try

to encourage students by giving them simpler problems, or giving them the same problem

over again, or something like that.  What we should do to help them build confidence and

judgment is give them activities that allow them to practice the individual component skills

involved in problem solving.  In this way they will perceive progress and develop self-

motivation.  I will be suggesting a few such activities later in the talk when we turn to

pedagogic practices.

Another simple descriptive model details the steps involved in the problem-solving

process [3].  The first step is to Understand the Problem.  During this step the solver encodes

the information contained in the problem and forms an internal representation of the

problem.  Clearly, the encoding and representing processes depend strongly upon the

knowledge store.  The second step, that of Devising a Plan, will be facilitated by the

hierarchical structure of the knowledge and will likely utilize one or more stored schemata.

Operational and procedural knowledge plays the major role during the third step, which is

Executing the Plan.  The last and, perhaps, the most important step in problem solving is

Reflection and Evaluation.  This is where meta-cognitive factors are brought to bear.  This is

also usually the hardest step for novices to master.

The three models mentioned above are attempts to describe the ingredients,

development, and functioning of the expert.  In and of themselves, they do not contribute

much new information.  Their value lies primarily in their ability to organize information and

to enable us to discuss what is a very complicated subject.

The last model I want to discuss is a model that concentrates less on the problem-solving

characteristics of the expert, and more on the general structure of knowledge and how that

structure is used differently by experts and novices to solve problems.  This is our model—the

one we use to govern our own curriculum-development work.  We find it helpful for thinking

about knowledge structures and for discussing the classification of and relationships between

knowledge elements.  Since our curriculum-development materials and the model on which

they are based is the topic of a workshop to be presented later today, I will be very brief here.

A visual representation of the model appropriate for an expert is shown in the figure

below.  Domain knowledge is partitioned into three types: conceptual knowledge,

operational/procedural knowledge, and problem situations.  As indicated in the figure, the
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expert’s knowledge is highly structured.  A corresponding figure for the novice would be

devoid of most of the clustering connections and the bi-directional links between the three

types of knowledge.

}Rich clustering;
hierarchical
arrangement.

}Strong, bi-directional,
concept-based links

}

Bi-directional links
between elements

and clusters
Operational and

Procedural Knowledge
Conceptual
Knowledge

Problem
Situations

Fig. 4.  A representation of the expert’s structure of knowledge

The only reason for introducing the model here is that I will be alluding to it later when

pedagogic practices are discussed.  To head off confusion it is, perhaps, beneficial to state

explicitly what the model does not contain.  Meta-level processes are not treated.  Also absent

are the procedural aspects of problem solving, although a very similar diagram could likely be

devised.

Cognitive research and maths and science education
What is or ought to be the interaction between cognitive research and maths/science

education?  At the research level the boundary between these two fields is extremely fuzzy.  I

think the only difference between cognitive research into high-level thinking and learning,

and educational research is fundamentally one of motivation: cognitive researchers would like

to understand the underlying processes, while educational researchers are frequently

interested in the efficaciousness of some particular pedagogic practice.  In any case, the

classroom can serve as a valuable laboratory for testing practices derived from cognitive

models.  As I remarked earlier, I believe both fields would benefit from increased involvement

of educators.
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The underlying philosophical framework of cognitive science, namely constructivism,

stresses the perspective that all learning is an internal process of actively constructing

knowledge.  The chief implication of this view for education, which is an attempt to interact

effectively with the learning process, is that teaching is essentially a communication process.

As a consequence, the problem of defining good teaching methods is rephrased as a problem of

establishing effective communication channels with the student.  Before proceeding to the

issue of how we might use communication to assist students in their process of constructing

knowledge, I want to discuss the steps involved in forming a reliable channel of

communication.

To my way of thinking, the algorithm for evolving a dependable means of communication

consists of four steps:

(1) create or refine a “code” or language comprehensible to both the sender and the

receiver;

(2) formulate a model of the receiver;

(3) make inferences based upon this model when constructing the message; and

(4) observe some effect or consequence of sending the message.

The last item is an attempt to determine if the message received was the message sent.

The observed effect might be a behavior change, a return message, or some other indication

that a signal has indeed been received.  If the response is as anticipated based upon the model,

the process can cycle directly to step (3).  In all other instances, the process recycles to step (1)

because it is necessary to reconsider the adequacy of either the code or the model of the

receiver.

There are two interesting observations to note here.  First, these four steps parallel the

“handshake” procedures used by two computers or other electronic devices when establishing

a communication link.  Also intriguing are the associations that can be drawn between these

steps and the four steps of expert problem solving mentioned earlier.  Viewed an appropriate

way, refining the communication process is just another problem to be solved.  It is, in fact, the

all pervasive problem of the teacher.  Simply presenting material, giving students problems,

and accepting answers back is not a refined-enough process of communication for efficient

education.  Failure to solve this problem makes all other efforts ineffectual, if not downright

futile.

We turn now to some general pedagogic practices implied by constructivism and by the

cognitive research that has been done to date.  You will, no doubt, perceive the influence of



20 Gerace

our own model in the manner in which these generalizations are expressed.  Although I will

give examples in an effort to be clear, these examples are all drawn from physics.  Some

additional thought may be needed for you to see specific applications to your own field.

1.  Use multiple representations.  A representation may be

linguistic, abstract, symbolic, pictorial, or concrete, just to name a few

categories.  Using many different representations for the same

knowledge helps the student to inter-relate knowledge types and relate

the knowledge to physical experience.

We in the sciences are often especially guilty of neglecting to relate the linguistic

representation, in which we have originally expressed the concept, to other representations,

particularly a concrete one.  Relating the symbolic and linguistic representations is also very

important.  If you wrote an equation on the board, could your student read that equation to

you?  Conversely, if you were to say to the student, “Write an equation that expresses the fact

that the change in the sum of the kinetic energies of two bodies equals the negative of the

change in the interaction potential energy between them,” what would they write down?  If

they can’t write anything, then all the words you use while solving a problem “just don’t

compute”.  Seeing little or no relationship between what you say and what you write, it is little

wonder that they focus upon the equations you use for solving the problem.  After all, they

will be asked to solve problems and their survival depends upon being able to use the

equations.

Another example would be subscripts or other subtle distinctions you wish to make.  I am

confident that all the physicists in the audience have had this experience.  You assign a

problem involving two masses, labeled m sub 1 (m1) and m sub 2 (m2) or, equivalently, Cap m

(M) and small m (m).  By the time the student has written two or three lines of equations the

distinction is completely lost.  All masses have become m, tempting them to cancel the masses

out of the problem.  Teaching students how to read symbolic expressions will sensitize them to

these distinctions.

2.  Help students interconnect their knowledge.  These

interconnections may be between knowledge elements of the same type,

which we label clustering, or between different types, which we call

linking.  Clustering and linking are facilitated by explicitly identifying

similarities and differences between elements.
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As an example of what I mean by explicitly identifying similarities and differences,

consider the following case from physics.  (My apologies to the non-physicists.)  When covering

rotational dynamics, I might well say to students, “Torque is a vector quantity.  In that way it is

like a force, but it does not have the units of force.  Torque is measured in the same units as

work or energy, which are scalars, but torque is not a type of energy.  You should note that

units are no longer sufficient to uniquely identify the nature of a quantity.”

Creating these clusters and links helps students to weave their knowledge into a fabric,

thereby providing them access to the knowledge by means other than chronological.  What I

mean by that is, in the absence of subsequent processing, we tend to store our knowledge and

experience chronologically.  You can convince yourself of this by considering what you

typically do when you have misplaced something and can’t find it.  It is like trying to find

something on a videotape.  You skip backward on your mental tape to find the last point when

you remember having the object, then forward again to find the first time you missed the

object.  You then scrutinize all your actions between these two points.  I know, for a fact, that

this analogy is applicable to student knowledge.  Suppose that a student thinks that they do

not know something, but you are convinced that they do, perhaps because they tested well

when the material was originally covered.  If, by asking them questions, you can get them to

recall some other piece of knowledge temporally close to the forgotten information, the

missing knowledge often becomes available to them.

This need to create associations that are other than temporal between knowledge

elements is also the rationale behind cumulative examinations.  Students generally have an

immense distaste for such exams.  Often I jokingly accuse them of adhering to the

displacement theory of learning: in order to learn a new piece of knowledge, they must forget

something they knew previously.  As long as knowledge is only stored chronologically, this is

not far from the truth.  Consider how the strategy for locating a lost object becomes

impractical if the interval to be searched is a year or more.

3.  Use extended context to hone concepts.  Concepts can be very

context dependent.  They do not become globally useful until they can

be abstracted.  Exploration of a broad context of applicability helps the

student to refine and abstract concepts.

When presenting new ideas or concepts to students, most teachers try very hard to be

precise.  However, even when we think we are being excruciatingly lucid, to the student’s

mind there remains a lot of ambiguity.  As students struggle to construct the concept, they

look for patterns and generalities.  Presented within a very restricted context, they often find
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many potential generalities and they are confused as to which one should form the kernel of

the concept.  Further, the better or more attentive the student, the greater the number of

possible patterns they perceive.  An extended context not only helps the student refine the

pattern and, thereby, abstract the concept, but also serves to make both student and teacher

aware of remaining latent ambiguities.

An example might help to make this less abstract.  In physics we have the concept of a

normal force, which is the component of the contact force between two objects acting

perpendicular to the contact surface.  Note first, that the concept has a remaining ambiguity:

there are two directions that are perpendicular to any surface.  The actual direction of the

normal force is assigned at the time that the concept is instantiated or applied to a specific

situation and is determined by which of the two objects is being considered.

The non-physicists may be a little befuddled about now.  That’s OK, you do not need to

fully understand normal forces to understand the point I am trying to make.  It might even

engender some sympathy for the student condition.

My point is actually rather simple.  This concept is introduced quite early in high school

physics courses.  The set of situations in which the concept is used is extremely restricted,

often involving only an isolated block resting or moving along a horizontal surface.  In such

cases the magnitude of the normal force (which is vertical) is equal to the weight of the block.

As a result of this limited context, students often conclude that the normal force always acts in

the vertical direction and/or that it is always equal to the weight of the block.  Such mis-

constructions can easily be made manifest by placing a second block on top of the first and

asking the student to identify the normal force on the bottom block due to the horizontal

surface; or by having the block travel along a vertical, curved track.  Unchallenged, these

erroneous concepts tend to harden and, by the time the student attends college, they can be

nearly impossible to correct.

4.  Use comparisons and contrasts to sensitize students to

categories and relationships.  Essential to the process of structuring

knowledge is the classification and inter-relation of knowledge

elements.  Simultaneous consideration of similar or contrasting

situations helps students perceive the commonalities and distinctions

needed to organize their knowledge store.

Frequently students fail to perceive any distinction between two objects or situations and,

as a result, they classify them the same way; they do not notice the subtle difference(s).
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Further, they may fail to see what two apparently very different objects or situations have in

common.  This lack of sensitivity impedes their ability to form useful categories of and

relationships between knowledge elements.

The best way to get students to perceive subtle differences is to present them with two

items that differ only in the regard you want them to focus upon.  Examining these two items

concurrently will reveal the distinction to them.  A rather simplistic example might be this: to

get students to perceive a subtle shade difference in color, present them with two objects that

have slightly different colors but have all other physical attributes in common.  If there is a

significant difference in the shapes of the items, that becomes the focus of attention, and

masks the difference in color.

The best way to get students to perceive some common property between two apparently

diverse objects or situations is to enlarge the set being examined.  Persisting with our trivial

example: someone who is presented with a red ball and a red vase is more likely to notice the

commonality of color if they are told that the common feature is shared with another set of

objects consisting of a red book, a red chair, and a red flower.

More realistic examples are abundant in physics.  Consider some simple equations

students encounter in an introductory course: F=ma, F=mg, F=–kx, F=µN, F=mv2/r.  To the

student these all appear alike.  They do not understand what the fuss is about.  For the benefit

of the non-physicists, the first equation is the dynamical principle that forms the basis of all of

Newtonian mechanics; the next three are approximate empirical laws; and the last is either a

special application of the first or (something I personally consider intellectually

reprehensible) the definition of a centripetal force.  The only sense in which all of these

equations are alike is their algebraic form.  To become an expert physicist, it is the differences

that must be understood.  Students can be induced to perceive the difference between the first

and the middle three by presenting them together and then noting that only the first permits

someone to determine the kinematic response of a body subject to forces, thus placing it in a

class by itself.  The commonality between the other three, namely their empirical nature, can

be stressed by noting that they are similar to Ohm’s law for circuits and other experimental

relationships.

One final comment I would like to make is that I do not believe in what could be called

one-pass learning.  Confronted with student’s lack of understanding, teachers are tempted to

slow their presentation of the material.  This is the wrong way to go and runs the risk of both

boring and frustrating students.  It is unrealistic to expect students to comprehend and

integrate all of the concepts and procedures the first time around.  In order for knowledge to
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be structured into an integrated whole, students must be able to relate knowledge elements.

The recognition of relationships between individual knowledge elements requires that some

rudimentary form of the knowledge be already present.  Multiple-pass learning, in which

earlier topics are revisited expressly for the purpose of establishing relationships and

perspective, is a much better way to go.

5.  Use more goal-free activities.  Goal-free activities reduce the

cognitive load associated with traditional problem solving.  This

permits the student to devote a larger amount of their cognitive

resources to tasks such as honing concepts or seeking relationships.

What is meant by a “goal-free activity”?  It is this: any question, problem or project that

does not have a well-defined or numerical answer.  For example, students might be asked to

compare two situations or explain how some quantity would change if a given situation were

modified slightly.  In addition to reducing cognitive load, such activities can be used to reveal

erroneous concepts or flaws in the student’s knowledge structure.  A wrong answer to a

traditional problem usually does not permit access to this information.  There may be several

correct ways to do a problem, but the number of wrong ways is infinite.  The incorrect answer,

either alone or with intermediate steps included, is insufficient for a teacher to identify

uniquely the incorrect path taken by the student.  One might go so far as to say that it is

testimony to the ingenuity of the human mind that anyone learns anything simply by having

their performance graded.  Goal-free activities provide a much richer basis for communication.

An example of a goal-free activity in physics would be this: A block is released from rest a

distance d from the bottom of a frictionless inclined plane.  A small marble and a cylinder,

each having the same mass as the block, roll the same distance down similar planes inclined at

the same angle.  Which of the objects has the largest kinetic energy when it reaches the

bottom of the incline, and why do you think this is so?  Again, for the benefit of the non-

physicist, the three objects all have the same kinetic energy at the bottom.  If students were to

say that they think the block has the greatest kinetic energy because it is moving the fastest,

then they would be telling you either that they misinterpreted the question or that they do not

consider rotational motion as having kinetic energy.  Subsequent questions (such as, “How do

the initial and final energies of each of the objects compare?”) would tease apart the various

possible misunderstandings.

How does your suggestion of using more goal-free activities rather than problems reconcile

with the efficiency of teaching problem solving?
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I think the issue here is “efficiency at what?”  If the goal is to have students be able to solve

some large but finite number of problems, then doing problems all the time may be most

efficient.  If, however, the goal is to have students think and be able to solve problems unlike

any they have seen before, then using goal-free activities, which help students form schemata,

is a better way.

6.  Meta-communicate about the learning process.  Meta-

communication helps students formulate meta-knowledge and increases

the likelihood of their becoming self-invested learners.

The idea of meta-communicating is not new.  Although all teachers already do it to one

degree or another, they tend to confine meta-communication to motivational factors.  What is

being advocated here is that we should be meta-communicating about the learning process

itself.  That, in essence, is what we are doing right now.

As teachers, our objective should not be to train students.  One trains animals; one

educates students.  As sentient beings, students can help monitor the communication process.

The chances of having the correct message received is greatly enhanced if there is a

conscientious receiver seeking the message.  To my way of thinking, students should be made

aware of all the issues we have been discussing.  Their ability to comprehend, of course, will

depend upon their innate ability and degree of development.  That just means that we must

explain the learning process often.

Meta-communication is a powerful means for helping students to become self-invested

learners.  Listed below are some of the active roles that students can play in the learning

process, together with an explanation of how meta-communication can be used to help them

define and function in that role.

(a) Students can actively participate in the establishment of a

communication language.  Students are capable of appreciating the

need for an unambiguous communication language; therefore,

forewarning them of the need for precision is very helpful.  This can be

reinforced by telling them what a particular term does not mean as

well as what it does mean.  In the sciences and mathematics, where

terms are rigorously defined, it is especially important to push against

colloquial interpretations.  If the term being introduced has a common

usage, having students first identify their current meaning for a word

helps them to distinguish the new definition from the old.  Examples



26 Gerace

from physics are terms like “work” or “deceleration”.  You

mathematicians, if you haven’t already done so, should ask your

students what the term “function” means to them.

(b) Students can be made to be defensive learners.  They should

be informed of common pitfalls or misunderstandings.  I think that this

tactic can be very effective in the area of misconceptions, especially for

those deep-seated misconceptions that impede further learning.

Students can attack common misconceptions easier from within than

we can from the outside.  While it is not an easy skill for them to learn,

students can be shown how to explore deliberately the internal

consistency of their mental models.  An example from physics would be

this: often students think that at the highest point in the trajectory of a

projectile the acceleration is zero, usually because the velocity is zero

and they do not understand the difference between these two concepts.

Asked to specify the velocity and acceleration of an object sitting on a

table, they will respond correctly.  If they are subsequently asked,

“Why then is the behavior of these two objects not the same?” they will

often realize their own mistake.  The most important part of this

interaction is that they have been given an example of how to use their

own knowledge to root out errors.

(c) Students can consciously participate in the structuring of

knowledge.  Students should be told that one of their objectives is to

categorize knowledge elements and perceive relationships and

patterns.  They should be told what it means to solve a problem, and

they should be encouraged to notice and extract general procedural

patterns.  You want to teach the student what it means to meta-think—

to be self-conscious about their thinking process.  This helps the

student form perspective and see the forest as well as the trees.  An

example of an activity that encourages this would be as follows: given a

set of two or more problems, ask the students to solve the problems

and then, by comparing the solutions, specify a set of steps or

procedures that are common to all the solutions.

I think that often we do not give students enough credit for their ability to participate in

the learning process.  All of the roles mentioned here sooner or later occur naturally in the

good student.  Meta-communication can help to speed up the process.
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I think I get the feel of a Catch-22.  Starting from a constructivist view, which emphasizes the

individual, you make up a set of rules the teacher should use when interacting with the

learner.  Hasn’t the individual again been lost?

I can understand your concern.  However, the rules that emerge are so general that they

actually encourage you to adjust the communication process to take account of both your own

style as well as that of the individual student.  Implicit in the rules is the idea that there is not

a perfect set of curriculum materials or a perfect lecture that every student will understand.

Another point I would like to make is that the set of steps for evolving a reliable channel of

communication apply not only to student–teacher interactions, but also to student–student

interactions.  By being attentive to the process, teachers can help students improve their

communication skills in general, thereby greatly enhancing peer learning.  Students do not

need the teacher all the time.  By interacting and communicating about the subject matter

with other students, they can do a lot of refining and constructing of concepts on their own.  I

think cooperative learning, or learning groups, should play a significant role in modern

education.

I would like to return to your point about students being distracted from real learning by the

need to obtain answers.  Isn’t that our own fault and the fault of our entire education system?

To a certain extent I would agree.  We must keep in mind, however, that, while it is not the

only important goal, getting the correct answer is still important.  We cannot completely

remove the need for answers or tests of problem solving.  There is an aspect to the current

stress upon answers which may be even worse than distraction.  We may have rewarded

students so much for getting the right answer that we have locked them into a means–ends

approach, which is efficient for getting answers.  The more successful they are, the more

rewarded, and the harder they are to teach.  Students can become addicted to that kind of

success, and very fearful of abandoning any process that yields correct answers.

When most students get to college, which is where I tend to see them, they try to carry

over thought and study patterns that they used in high school.  When these fail them, they

panic.  I tell them that no one can tell them how they should learn.  No two people learn

exactly the same way.  Some people need to do problems; other people are more visual, they

can just read more; some people are very interactive, and learn better that way.  They really

have to become very experimental learners, try to figure out how they learn best and

determine what kinds of experiences they should seek.  I think you can begin to make that

point to them at a much earlier age than college.

I’d like to just comment that, in an examination system, the rewards in college are for the same

things as in high school: getting answers.
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A very important point.  If you want to change the system you have to interact with the

assessment process.  You have to reward students for thinking, not just getting the right

answers.  You must be activist, both in terms of the exams you yourself make up, as well as

interacting with whatever state assessment processes exist.  You have to make conceptual

issues more prevalent.

To summarize, I would assert that the greatest contribution of cognitive research to

mathematics and science education is a re-formulation of the entire educational endeavor as

one that should be:

(1) Learner-centered.  Methodologies must take account of prior learning.  Students

should be self-conscious learners and fully engaged in the process.

(2) Process-oriented.  Knowledge is constructed and not transmitted.  Students must

actively process their experience to form useful knowledge structures.

(3) A bi-directional communication process.  Effective education requires two-

way interaction with the learner.

In closing I would like to return to the issue I raised at the very beginning.  As both

scientists and educators, we should reaffirm that Wisdom, and not Knowledge or Information,

should be the primary goal of education.

Thank-you…
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